Carbide Nanoparticle Dispersion Techniques for Metal Powder Metallurgy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Machines and Materials
2.2. Different NP Dispersion Processing Routes
2.2.1. Route-1 (Red): Low vs. High-Energy Ball-Milling NPs Directly with Fe Powders
2.2.2. Route-2 (Blue): High-Energy Ball-Milling with Direct Surfactant Additions to NPs and Fe Powders
2.2.3. Route-3 (Gold): Mixing of the Powders via Liquid Solution
2.2.4. Route-4 (Purple): Mechanochemical Processing on Solution-Mixed Powders
2.2.5. Route-5 (Green): Mechanochemical Processing of Dispersed NPs
2.3. Consolidation of Powder Mixture
2.4. Analyses and Characterization
3. Results
3.1. Assessments of Route 1: Low vs. High-Energy Ball-Milling NPs Directly with Fe Powders
3.2. Assessments of Route 2: High-Energy Ball-Milling with Direct Surfactant Additions to the NPs and Fe Powders
3.3. Assessments of Route 3: Mixing of the Powders via a Liquid Solution
3.4. Assessment of Route-4: Mechanochemical Processing on Solution-Mixed Powders
3.5. Assessment of Route-5: Mechanochemical Processing on the Dispersed NPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malaki, M.; Xu, W.; Kasar, A.K.; Menezes, P.L.; Dieringa, H.; Varma, R.S.; Gupta, M. Advanced metal matrix nanocomposites. Metals 2019, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2011, 41, 666–686. [Google Scholar] [CrossRef] [PubMed]
- Riedel, R. Nanoscaled inorganic materials by molecular design. Chem. Soc. Rev. 2012, 41, 5029. [Google Scholar] [CrossRef]
- Soltani, N.; Sadrnezhaad, S.K.; Bahrami, A. Manufacturing wear-resistant 10Ce-TZP/Al2O3 nanoparticle aluminum composite by powder metallurgy processing. Mater. Manuf. Process. 2014, 29, 1237–1244. [Google Scholar] [CrossRef]
- Pham, V.T.; Bui, H.T.; Tran, B.T.; Nguyen, V.T.; Le, D.Q.; Than, X.T.; Doan, D.P.; Phan, N.M. The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 015006. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.; Wang, Z.; Yang, C.; Zhang, G.; Prashanth, K.; Suryanarayana, C. A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy. Mater. Sci. Eng. A 2018, 734, 34–41. [Google Scholar] [CrossRef]
- Zhou, X.; Su, D.; Wu, C.; Liu, L. Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites. J. Nanomater. 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Shi, R.-J.; Wang, Z.-D.; Qiao, L.-J.; Pang, X.-L. Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel. Int. J. Miner. Met. Mater. 2021, 28, 644–656. [Google Scholar] [CrossRef]
- Cho, L.; Seo, E.J.; Sulistiyo, D.H.; Jo, K.R.; Kim, S.W.; Oh, J.K.; Cho, Y.R.; De Cooman, B.C. Influence of vanadium on the hydrogen embrittlement of aluminized ultra-high strength press hardening steel. Mater. Sci. Eng. A 2018, 735, 448–455. [Google Scholar] [CrossRef]
- Depover, T.; Verbeken, K. Hydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe-C-Cr alloys. Mater. Sci. Eng. A 2016, 669, 134–149. [Google Scholar] [CrossRef]
- Ghosh, K.; Mondal, D. Effect of grain size on mechanical electrochemical and hydrogen embrittlement behaviour of a micro-alloy steel. Mater. Sci. Eng. A 2013, 559, 693–705. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Prevention of hydrogen embrittlement in steels. ISIJ Int. 2016, 56, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-Y.; Xu, J.-Q.; Choi, H.; Pozuelo, M.; Ma, X.; Bhowmick, S.; Yang, J.-M.; Mathaudhu, S.; Li, X.-C. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nat. Cell Biol. 2015, 528, 539–543. [Google Scholar] [CrossRef]
- Mackay, M.E.; Tuteja, A.; Duxbury, P.M.; Hawker, C.J.; Van Horn, B.; Guan, Z.; Chen, G.; Krishnan, R.S. General strategies for nanoparticle dispersion. Science. 2006, 311, 1740–1743. [Google Scholar] [CrossRef] [PubMed]
- Korayem, A.; Tourani, N.; Zakertabrizi, M.; Sabziparvar, A.; Duan, W. A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective. Constr. Build. Mater. 2017, 153, 346–357. [Google Scholar] [CrossRef]
- Machado, B.B.; Scabini, L.F.; Orue, J.P.M.; De Arruda, M.S.; Goncalves, D.N.; Goncalves, W.N.; Moreira, R.; Rodrigues, J.F., Jr. A complex network approach for nanoparticle agglomeration analysis in nanoscale images. J. Nanopart. Res. 2017, 19, 65. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, S.V.; Tschulik, K.; Batchelor-McAuley, C.; Jurkschat, K.; Compton, R.G. Reversible or not? Distinguishing agglomeration and aggregation at the nanoscale. Anal. Chem. 2015, 87, 10033–10039. [Google Scholar] [CrossRef] [PubMed]
- Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 2010, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Loza, K.; Epple, M.; Maskos, M. Stability of nanoparticle dispersions and particle agglomeration. In 2D Nanoelectronics; Springer Science and Business Media LLC: New York, NY, USA, 2019; pp. 85–100. [Google Scholar]
- Shang, X.; Wang, X.; Chen, S. Effects of ball milling processing conditions and alloy components on the synthesis of Cu-Nb and Cu-Mo alloys. Materials 2019, 12, 1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilyas, S.U.; Pendyala, R.; Marneni, N. Preparation, sedimentation, and agglomeration of nanofluids. Chem. Eng. Technol. 2014, 37, 2011–2021. [Google Scholar] [CrossRef]
- Razavi-Tousi, S.S.; Szpunar, J.A. Role of ball milling of aluminum powders in promotion of aluminum-water reaction to generate hydrogen. Met. Mater. Trans. E 2014, 1, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Sarwat, S.G. Contamination in wet-ball milling. Powder Met. 2017, 60, 267–272. [Google Scholar] [CrossRef]
- Toozandehjani, M.; Matori, K.A.; Ostovan, F.; Aziz, S.A.; Mamat, S. Effect of milling time on the microstructure, physical and mechanical properties of Al-Al2O3 nanocomposite synthesized by ball milling and powder metallurgy. Materials 2017, 10, 1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-García, J.; Sánchez-Alarcos, V.; Recarte, V.; Rodríguez-Velamazán, J.; Unzueta, I.; Plazaola, F.; La Roca, P.; Pérez-Landazábal, J. Effect of high-energy ball-milling on the magnetostructural properties of a Ni45Co5Mn35Sn15 alloy. J. Alloys Compd. 2021, 858, 158350. [Google Scholar] [CrossRef]
- Cipolloni, G.; Pellizzari, M.; Molinari, A.; Hebda, M.; Zadra, M. Contamination during the high-energy milling of atomized copper powder and its effects on spark plasma sintering. Powder Technol. 2015, 275, 51–59. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Bolsonella, A.; Naimi, F.; Heintz, O.; Tricone, T.; Couque, H.; Bernard, F. Influence of oxygen induced during high-energy ball milling process on the mechanical properties of sintered nickel by SPS. J. Alloys Compd. 2021, 856, 157869. [Google Scholar] [CrossRef]
- Im, T.; Pyo, J.; Lee, J.-S.; Lee, C.S. Fabrication of homogeneous nanosized nickel powders using a planetary ball mill: Applications to multilayer ceramic capacitors (MLCCs). Powder Technol. 2021, 382, 118–125. [Google Scholar] [CrossRef]
- Caicedo, F.M.C.; López, E.V.; Agarwal, A.; Drozd, V.; Durygin, A.; Hernandez, A.F.; Wang, C. Synthesis of graphene oxide from graphite by ball milling. Diam. Relat. Mater. 2020, 109, 108064. [Google Scholar] [CrossRef]
- Rogal, Ł; Kalita, D.; Tarasek, A.; Bobrowski, P.; Czerwinski, F. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J. Alloys Compd. 2017, 708, 344–352. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Ivanov, E. Mechanochemical synthesis of nanocrystalline metal powders. In Advances in Powder Metallurgy; Elsevier: Amsterdam, The Netherlands, 2013; pp. 42–68. [Google Scholar]
- Gilstrap, R.A.; Capozzi, C.J.; Carson, C.G.; Gerhardt, R.A.; Summers, C.J. Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion. Adv. Mater. 2008, 20, 4163–4166. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, Y.; Cai, J.-G.; Chen, Z.-H.; Huang, P.-Y. Production of intermetallic compound powders by a mechanochemical approach: Solid–liquid reaction ball milling. In High-Energy Ball Milling; Elsevier: Amsterdam, The Netherlands, 2010; pp. 149–166. [Google Scholar]
- El-Nour, K.M.A.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010, 3, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Tang, F.; Suzuki, T.S.; Sakka, Y. Role of the initial degree of ionization of polyethylenimine in the dispersion of silicon carbide nanoparticles. J. Am. Ceram. Soc. 2003, 86, 189–191. [Google Scholar] [CrossRef]
- Nomura, Y.; Iijima, M.; Kamiya, H. Hydrophobic group functionalization of polyethyleneimine for controlling dispersion behavior of silicon carbide nanoparticles in aqueous suspension. J. Am. Ceram. Soc. 2012, 95, 3448–3454. [Google Scholar] [CrossRef]
- Vilinska, A.; Ponnurangam, S.; Chernyshova, I.; Somasundaran, P.; Eroglu, D.; Martinez, J.; West, A.C. Stabilization of Silicon Carbide (SiC) micro- and nanoparticle dispersions in the presence of concentrated electrolyte. J. Colloid Interface Sci. 2014, 423, 48–53. [Google Scholar] [CrossRef]
- Kowalski, A.J.; Watson, S.; Wall, K. Dispersion of nanoparticle clusters by ball milling. J. Dispers. Sci. Technol. 2008, 29, 600–604. [Google Scholar] [CrossRef]
- Afkham, Y.; Khosroshahi, R.A.; Mousavian, R.T.; Brabazon, D.; Kheirifard, R. Microstructural characterization of ball-milled metal matrix nanocomposites (Cr, Ni, Ti)-25 wt% (Al2O3np, SiCnp). Part. Sci. Technol. 2016, 36, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Suryanarayana, C.; An, I.-S. Mechanical alloying and milling. J. Korean Powder Met. Inst. 2006, 13, 371–372. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, M.; Inagaki, M. X-ray diffraction methods to study crystallite size and lattice constants of carbon materials. In Carbon Alloys; Elsevier: Amsterdam, The Netherlands, 2003; pp. 161–173. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocky, B.P.; Weinberger, C.R.; Daniewicz, S.R.; Thompson, G.B. Carbide Nanoparticle Dispersion Techniques for Metal Powder Metallurgy. Metals 2021, 11, 871. https://doi.org/10.3390/met11060871
Rocky BP, Weinberger CR, Daniewicz SR, Thompson GB. Carbide Nanoparticle Dispersion Techniques for Metal Powder Metallurgy. Metals. 2021; 11(6):871. https://doi.org/10.3390/met11060871
Chicago/Turabian StyleRocky, Bahrum Prang, Christopher R. Weinberger, Steven R. Daniewicz, and Gregory B. Thompson. 2021. "Carbide Nanoparticle Dispersion Techniques for Metal Powder Metallurgy" Metals 11, no. 6: 871. https://doi.org/10.3390/met11060871
APA StyleRocky, B. P., Weinberger, C. R., Daniewicz, S. R., & Thompson, G. B. (2021). Carbide Nanoparticle Dispersion Techniques for Metal Powder Metallurgy. Metals, 11(6), 871. https://doi.org/10.3390/met11060871