Sintering High Green Density Direct Powder Rolled Titanium Strips, in Argon Atmosphere
Abstract
:1. Introduction
1.1. Titanium Sheet Production from Ingot
1.2. Titanium Sheet Production from Powder
1.3. Vacuum Sintering
1.4. Argon Gas Sintering
2. Materials and Methods
2.1. Titanium Powder Characteristics
2.2. The Powder Rolling and Sintering Processes
2.3. Sintered Strip Property Analyses
2.3.1. Strip Density and Vickers Microhardness
2.3.2. Tensile Testing
2.3.3. Microstructural Characterization
3. Results and Discussion
3.1. Strip Density
3.2. Vickers Microhardness
3.3. Tensile Properties
3.3.1. Tensile Elongation
3.3.2. Ultimate Tensile Strength
3.3.3. Elastic Modulus
3.4. Microstructural and Grain Size Analysis
3.4.1. Sintered Strip Microstructure
3.4.2. Grain Size Analysis
4. Discussion
4.1. Density
4.2. Tensile Properties
4.2.1. Tensile Elongation
4.2.2. Ultimate Tensile Strength
4.3. Grain Size Analysis
4.4. Continuous Sintering Furnaces
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donachie, M.J. Introduction to selection of titanium alloys. In Titanium: A Technical Guide; ASM International: Materials Park, OH, USA, 2000; pp. 5–11. [Google Scholar]
- Froes, F.H.; Gungor, M.N.; Imam, M.A. Cost-affordable titanium: The component fabrication perspective. J. Miner. Met. Mater. Soc. 2007, 59, 28–31. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Paramore, J.D.; Sun, P.; Chandran, K.S.R.; Zhang, Y.; Xia, Y.; Cao, F.; Koopman, M.; Free, M. Powder metallurgy of titanium: Past, present and future. Int. Mater. Rev. 2018, 63, 407–459. [Google Scholar] [CrossRef]
- Nippon, S.C. Product Catalog. Available online: https://www.nipponsteel.com/product/catalog_download/pdf/T001en.pdf (accessed on 19 January 2020).
- German, R.M. Sintering practice. In Sintering Theory and Practice, 1st ed.; Wiley-Interscience: New York, NY, USA, 1996; Volume 1, pp. 450–496. [Google Scholar]
- Steytler, M.; Knutsen, R.D. Identifying challenges to the commercial viability of direct powder rolled titanium: A systematic review and market analysis. Materials 2020, 13, 1–24. [Google Scholar] [CrossRef]
- Fray, D.J. Novel methods for the production of titanium. Int. Mater. Rev. 2008, 53, 317–325. [Google Scholar] [CrossRef]
- TIMET. Products. Available online: https://www.timet.com/ (accessed on 20 December 2020).
- Nippon, S. Manufacturing Process. Available online: https://www.nipponsteel.com/en/product/titan/process/ (accessed on 12 January 2020).
- Donachie, M.J. Ingot metallurgy and mill products. In Titanium: A Technical Guide, 2nd ed.; ASM International: Materials Park, OH, USA, 2000; Volume 1, pp. 25–30. [Google Scholar]
- Liu, Y.; Luo, X.; Li, Z. Microstructure evolution during semisolid powder rolling and post-treatment of 7050 aluminum alloy strips. J. Mater. Process. Technol. 2014, 214, 165–174. [Google Scholar] [CrossRef]
- Smith, D. Sintering furnaces for the PM industry. Metal. Powder Rep. 1990, 45, 605–610. [Google Scholar] [CrossRef]
- Park, N.K.; Lee, C.H.; Kim, J.H.; Hong, J.K. Characteristics of powder-rolled and sintered sheets made from HDH Ti-powders. Key Eng. Mater. 2012, 520, 281–288. [Google Scholar] [CrossRef]
- Cantin, G.M.D.; Gibson, M.A. Titanium sheet fabrication from powder. In Titanium Powder Metallurgy: Science, Technology and Applications, 1st ed.; Qian, M., Froes, F.H., Eds.; Butterworth-Heinemann: New York, NY, USA, 2015; pp. 383–403. [Google Scholar]
- Zhang, Y.; Knutsen, R.D. A Study of Direct Powder Rolling Route for CP-Titanium. Master’s Thesis, University of Cape-Town, Cape Town, South Africa, 2015. [Google Scholar]
- Duz, V.; Matviychuk, M.; Klevtsov, A.; Moxson, V. Industrial application of titanium hydride powder. Metal. Powder Rep. 2017, 72, 30–38. [Google Scholar] [CrossRef]
- Muth, T.; Barnes, J.E.; Yamamoto, Y.; Paliwal, M.; Peter, W.H.; Chen, W.; Jolly, B.; Stone, N.A.; Cantin, G.M.D.; Smith, R.; et al. Titanium sheet fabricated from powder for industrial applications. J. Miner. Met. Mater. Soc. 2012, 64, 566–571. [Google Scholar] [CrossRef]
- Moxson, V.S.; Duz, V.A. Process of Direct Powder Rolling of Blended Titanium Alloys, Titanium Matrix Composites and Titanium Aluminides. US Patent 2006/0147333 A1, 6 July 2006. [Google Scholar]
- National Research Council. Titanium: Past, Present and Future; The National Academy Press: Washington, DC, USA, 1983. [Google Scholar] [CrossRef]
- Yu, C. Ti Powder Sintering: Impurity, Sintering Atmosphere and Alloy Design. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2014. [Google Scholar]
- German, R.M. Thermodynamic and kinetic treatments. In Sintering: From Empirical Observations to Scientific Principles, 1st ed.; Butterworth-Heinemann: Waltham, MA, USA, 2014; pp. 183–223. [Google Scholar]
- Muchavi, N.S. Effects of Thermal Processing of Blended and Roll Compacted Ti-6Al-4V Strips on Microstructure and Properties. Master’s Thesis, University of Johannesburg, Johannesburg, South Africa, 2018. [Google Scholar]
- Table of Chemical Composition. Certificate of Chemical Compositional Analysis; LH-20190709-03, Baoji Lihua Non-ferrous Metals Co.Ltd.: Baoji, China, 17 August 2019. [Google Scholar]
- ASTM-B265-08b. Standard Specification for Titanium and Titanium Alloy Strip, Sheet and Plate; American Society for Testing and Materials International: West Conshohocken, PA, USA, 2008. [Google Scholar] [CrossRef]
- Barbis, D.P.; Gasior, R.M.; Walker, G.P.; Capone, J.A.; Schaeffer, T.S. Titanium powders from the hydride-dehydride process. In Titanium Powder Metallurgy: Science, Technology and Applications, 1st ed.; Qian, M., Froes, F.H., Eds.; Butterworth-Heinemann: New York, NY, USA, 2015; pp. 101–116. [Google Scholar]
- Afrox. Specification data sheet: Baseline 5.0; Afrox: Gauteng, South Africa, 2017. [Google Scholar]
- ASTM-B962-08b. Standard Test Method for Density of Compacted or Sintered Powder Metallurgy (PM) Products using Archimede’s Principle; American Society for Testing and Materials International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- ASTM-B933-16. Standard Test Method for Micro Indentation Hardness of Powder Metallurgy (PM) Materials; American Society for Testing and Materials International: West Conshohocken, PA, USA, 2016. [Google Scholar] [CrossRef]
- ASTM-E8/E8M-08. Standard Test Methods for Tension Testing of Metallic Materials; American Society for Testing and Materials: West Conshohocken, PA, USA, 2008. [Google Scholar] [CrossRef]
- ASTM-E83-16. Standard Practice for Verification and Classification of Extensometer Systems; American Society for Testing and Materials International: West Conshohocken, PA, USA, 2016. [Google Scholar] [CrossRef]
- ASTM-E111-04. Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus; American Society for Testing and Materials International: West Conshohocken, PA, USA, 2004. [Google Scholar] [CrossRef]
- ASTM-E3-11. Standard Guide for Preparation of Metallographic Specimens; American Society for Testing and Materials International: West Conshohocken, PA, USA, 2011. [Google Scholar] [CrossRef]
- Geels, K.; Ruckert, M. Chapter 13: Specimen preparation. In Metallographic and Materialographic: Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing, 1st ed.; ASTM International: West Conshohocken, PA, USA, 2007; pp. 416–420. [Google Scholar]
- Taylor, B.; Weidmann, E. Metallographic Preparation of Titanium: Struers Application Notes; Struers: Ballerup, Denmark, 2016. [Google Scholar]
- ASTM-E112-13. Standard Test Methods for Determining Average Grain Size; American Society for Testing and Materials: West Conshohocken, PA, USA, 2013. [Google Scholar] [CrossRef]
- German, R.M. Microstructure and processing relations in solid state sintering. In Sintering Theory and Practice, 1st ed.; Wiley-Interscience: New York, NY, USA, 1996; p. 143. [Google Scholar]
- Robertson, I.M.; Schaffer, G.B. Review of densification of titanium based powder systems in press and sinter processing. Powder Metall. 2010, 53, 146–162. [Google Scholar] [CrossRef]
- Robertson, I.M.; Schaffer, G.B. Some effects of particle size on the sintering of titanium and a master sintering curve model. Metall. Mater. Trans. A 2009, 40A, 1968–1979. [Google Scholar] [CrossRef]
- Donachie, M.J. Machining. In Titanium: A Technical Guide, 2nd ed.; ASM International: Materials Park, OH, USA, 2000; pp. 313–326. [Google Scholar]
- Donachie, M.J. Understanding the metallurgy of titanium. In Titanium: A Technical Guide, 2nd ed.; ASM International: Materials Park, OH, USA, 2000; pp. 13–21. [Google Scholar]
- Kofstad, P. High-temperature oxidation of titanium. J. Less Common Met. 1967, 12, 449–464. [Google Scholar] [CrossRef]
- Nakajima, H.; Koiwa, M. Review: Diffusion in titanium. ISIJ Int. 1991, 31, 757–766. [Google Scholar] [CrossRef] [Green Version]
- Arensburger, D.S.; Pugin, V.S.; Fedorchenko, I.M. Properties of electrolytic and reduced titanium powders and sinterability of porous compacts from such powders. Sov. Powder Metall. Metal. Ceram. 1968, 7, 362–367. [Google Scholar] [CrossRef]
- Conrad, H. Effect of interstitial solutes on the strength and ductility of titanium. Prog. Mater. Sci. 1981, 26, 123–403. [Google Scholar] [CrossRef]
- Askeland, D.R.; Phule, P.P. Imperfections in the atomic and ionic arrangements. In The Science and Engineering of Materials, 4th ed.; Brooks/Cole-Thomson Learning: Boston, MA, USA, 2003; Volume 1, p. 154. [Google Scholar]
- Takebe, H.; Mori, K.; Takahashi, K.; Fujii, H. Effects of Thickness and Grain Size on Tensile Properties of Pure Titanium Thin Gauge Sheets. In Proceedings of the 13th World Conference on Titanium, San Diego, CA, USA, 16–20 August 2016; pp. 491–494. [Google Scholar]
- Wang, H.; Sun, P.; Fang, Z.Z. A critical review of mechanical properties of powder metallurgy titanium. Int. J. Powder Metall. 2010, 46, 45–57. [Google Scholar]
- RMI. Titanium Alloy Guide; RMI Titanium Company: Pittsburgh, PA, USA, 2000. [Google Scholar]
- Huda, Z. Chapter 14: Recrystallization and grain growth. In Metallurgy for Physicists and Engineers: Fundamentals, Applications and Calculations, 1st ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2020; pp. 311–319. [Google Scholar]
- German, R.M. Solid state sintering fundamentals. In Sintering Theory and Practice, 1st ed.; John Wiley and Sons: New York, NY, USA, 1996; Volume 1, pp. 69–111. [Google Scholar]
- German, R.M. Introduction to sintering. In Sintering Theory and Practice, 1st ed.; John Wiley and Sons: New York, NY, USA, 1996; Volume 1, p. 8. [Google Scholar]
- German, R.M. Sintering measurement techniques. In Sintering Theory and Practice, 1st ed.; Wiley-Interscience: New York, NY, USA, 1996; Volume 1, pp. 23–66. [Google Scholar]
- Smith, K.K.; Kassner, M.E. Through-thickness compression testing of commercially pure (grade 2) titanium thin sheet to large strains. J. Metall. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.J.; Zhu, X.J. Dynamic recrystallization in commercially pure titanium. J. Achiev. Mater. Manuf. Eng. 2006, 18, 183–186. [Google Scholar]
- Zhang, X.H.; Tang, B.; Zhang, X.L.; Kou, H.C.; Li, J.S.; Zhou, L. Microstructure and texture of commercially pure titanium in cold deep drawing. Trans. Nonferrous Met. Soc. China 2011, 22, 496–502. [Google Scholar] [CrossRef]
- Nabertherm. Thermal Process Technology; Nabertherm: Lilienthal, Germany, 2019. [Google Scholar]
- CM Furnaces. Continous Wire, Strip and Tube Annealing Furnaces; CM Furnaces: Bloomfield, NJ, USA, 2015. [Google Scholar]
- Qian, M. Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication. Int. J. Powder Metall. 2010, 46, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Wasz, M.L.; Brotzen, F.R.; Mclellan, R.B.; Griffin, A.J. Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium. Int. Mater. Rev. 1996, 41, 1–12. [Google Scholar] [CrossRef]
- Alhazaa, A.; Haneklaus, N.; Almutairi, Z. Impulse pressure assisted-assisted diffusion bonding (IPADB): Review and outlook. Metals 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Montanari, R.; Costanza, G.; Tata, M.E.; Testani, C. Lattice expansion of Ti-6AL-4V by nitrogen and oxygen absorption. Mater. Charact. 2006, 59, 334–337. [Google Scholar] [CrossRef] [Green Version]
- Stone, N.; Cantin, D.; Gibson, M.; Kearney, T.; Lathabai, S.; Ritchie, D.; Wilson, R.; Yousuff, M.; Rajakumar, R.; Rogers, K. Implementing the Direct Powder Route for Titanium Mill Product: Continuous Production of CP Sheet. Mater. Sci. Forum 2009, 618–619, 139–142. [Google Scholar] [CrossRef]
- German, R.M. Sintering densification for powder mixtures of varying distribution width. Acta Metall. Mater. 1992, 40, 2085–2089. [Google Scholar] [CrossRef]
- Lutjering, G.; Williams, J.C. Commercially pure (CP) titanium and alpha alloys. In Titanium, 2nd ed.; Springer: Berlin, Germany, 2007; Volume 1, pp. 175–201. [Google Scholar]
- Silva, G.R.C.; Philips, T.; Dwyer, J.J.; Zurecki, Z. Techniques and tips to optimize, control and stabilize the atmosphere inside a continous sintering furnace. Mater. Sci. Forum. 2012, 728, 404–411. [Google Scholar] [CrossRef]
- The Furnace Belt Company Limited. Product Catalog; The Furnace Belt Company Limited: Mississauga, ON, Canada, 2002; p. 22. [Google Scholar]
- German, R.M. Sintering practice. In Sintering: From Empirical Observations to Scientific Principles; Elsevier: Oxford, UK, 2014; pp. 471–509. [Google Scholar]
Titanium Product | Fe (wt.%) | C (wt.%) | N (wt.%) | H (wt.%) | O (wt.%) |
---|---|---|---|---|---|
−45 μm powder [23] | 0.016 | 0.003 | 0.014 | 0.025 | 0.35 |
ASTM Grade 3 [24] | ≤0.3 | ≤0.08 | ≤0.05 | ≤0.015 | ≤0.35 |
D10 (µm) | D50 (µm) | D90 (µm) |
---|---|---|
11.55 | 27.37 | 48.33 |
Argon Gas Grade | H2O (ppm) | O2 (ppm) | N2 (ppm) | CH4 (ppm) |
---|---|---|---|---|
99.999% [26] | <3 | <2 | <5 | <0.5 |
Temperature | 1100 °C | 1200 °C | 1300 °C |
---|---|---|---|
Time (min) | 30 | 30 | 30 |
60 | 60 | 60 | |
90 | 90 | 90 |
Sinter Temperature (°C) | 30 min (GPa) | 60 min (GPa) | 90 min (GPa) |
---|---|---|---|
1100 | 97.1 ± 5.2 | 98.3 ± 3.6 | 99.2 ± 4.4 |
1200 | 98.9 ± 6.1 | 101.0 ± 3.3 | 103.9 ± 3.1 |
1300 | 102.5 ± 2.7 | 105.1 ± 2.8 | 108.2 ± 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govender, A.; Bemont, C.; Chikosha, S. Sintering High Green Density Direct Powder Rolled Titanium Strips, in Argon Atmosphere. Metals 2021, 11, 936. https://doi.org/10.3390/met11060936
Govender A, Bemont C, Chikosha S. Sintering High Green Density Direct Powder Rolled Titanium Strips, in Argon Atmosphere. Metals. 2021; 11(6):936. https://doi.org/10.3390/met11060936
Chicago/Turabian StyleGovender, Anthony, Clinton Bemont, and Silethelwe Chikosha. 2021. "Sintering High Green Density Direct Powder Rolled Titanium Strips, in Argon Atmosphere" Metals 11, no. 6: 936. https://doi.org/10.3390/met11060936
APA StyleGovender, A., Bemont, C., & Chikosha, S. (2021). Sintering High Green Density Direct Powder Rolled Titanium Strips, in Argon Atmosphere. Metals, 11(6), 936. https://doi.org/10.3390/met11060936