Determination of Critical Transformation Temperatures for the Optimisation of Spring Steel Heat Treatment Processes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Critical Transformation Temperature
3.2. The Effect of Soaking Time on Phase Transformation
3.3. The Effect of Cooling Rates on Phase Transformation
3.4. Effect of Cooling Rates on the Microstructure and Hardness Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rashid Khan, H.U.; Siddique, M.; Zaman, K.; Yousaf, S.U.; Shoukry, A.M.; Gani, S.S.; Khan, A.H.; Sanil, S.S. The impact of air transportation, railways transportation, and port container traffic on energy demand, customs duty, and economic growth: Evidence from a panel of low-, middle-, and high-income countries. J. Air Transp. Manag. 2018, 70, 18–35. [Google Scholar] [CrossRef]
- Wang, C.; Lim, M.K.; Zhang, X. Railway and road infrastructure in the Belt and Road Initiative countries: Estimating the impact of transport infrastructure on economic growth. Transp. Res. Part A Policy Pract. 2020, 134, 288–307. [Google Scholar] [CrossRef]
- Eom, B.G.; Kang, B.B.; Lee, H.S. A study on running stability assessment methods for 1/5 small scaled bogie of saemaul using small-scaled derailment simulator. Int. J. Precis. Eng. Manuf. 2013, 14, 589–598. [Google Scholar] [CrossRef]
- Das, S.K.; Mukhopadhyay, N.K.; Kumar, B.R.; Bhattacharya, D.K. Failure analysis of a passenger car coil spring. Eng. Fail. Anal. 2007, 14, 158–163. [Google Scholar] [CrossRef]
- BSI Group. BS EN 10089: Hot Rolled Steels for Quenched and Tempered Springs—Technical Delivery Conditions; British Standards Institute: London, UK, 2002. [Google Scholar]
- Reed-Hill, R.W. Physical Metallurgy Principles; PWS Publishing Company: New York, NY, USA, 1973. [Google Scholar]
- Bhargava, A.K.; Banerjee, M.K. 2.2 Hardenability of Steel. In Comprehensive Materials Finishing; Elsevier: Dublin, Ireland, 2017; pp. 50–70. [Google Scholar]
- Liu, S.Y.; Liu, D.Y.; Liu, S.C. Effect of heat treatment on fatigue resistance of spring steel 60Si2CrVAT. Met. Sci. Heat Treat. Eng. 2010, 52, 57–60. [Google Scholar]
- Khovova, O.M.; Piskunova, E.N.; Dumanskii, I.O. A study of the properties of spring alloy 36nkhtyu after rapid quenching and combined aging. Met. Sci. Heat Treat. 2010, 52, 243–250. [Google Scholar] [CrossRef]
- Fedin, V.M.; Borts, A.I. Heat treatment and thermoplastic treatment. Met. Sci. Heat Treat. 2009, 51, 544–552. [Google Scholar] [CrossRef]
- Atkins, M. Atlas of Continous Cooling Transformation Diagrams for Engineering Steels; American Society for Metals: Metals Park, OH, USA, 1980. [Google Scholar]
- Matjeke, V.J.; van der Merwe, W.J.; Mukwevho, G.; Phasha, M.J. Thermal characteristics of spring steels used in railway bogies. SN Appl. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Maisuradze, M.V.; Ryzhkov, M.A. Phase transformations and microstructure of advanced engineering steels. Mater. Today Proc. 2019, 19, 1985–1989. [Google Scholar] [CrossRef]
- Peng, F.; Xu, Y.; Li, J.; Gu, X.; Wang, X. Interaction of martensite and bainite transformations and its dependence on quenching temperature in intercritical quenching and partitioning steels. Mater. Des. 2019, 181, 107921. [Google Scholar] [CrossRef]
- Mohapatra, G.; Sommer, F.; Mittemeijer, E.J. Calibration of a quenching and deformation differential dilatometer upon heating and cooling: Thermal expansion of Fe and Fe-Ni alloys. Thermochim. Acta 2007, 453, 31–41. [Google Scholar] [CrossRef]
- Motycka, P.; Kover, M. Evaluation methods of dilatometer curves of phase transformation. Recent Trends Struct. Mater. 2012, 11, 21–22. [Google Scholar]
- Caballero, F.G.; Capdevila, C.; de Andres, G. An Attempt to Establish the Variables that Most Directly Influence Austenite Formation Process in Steel; Centro Nacional de Investigaciones Metalúrgicas: Madrid, Spain, 2003; pp. 1–42. [Google Scholar]
- Wu, Q.S.; Zheng, S.H.; Huang, Q.Y.; Liu, S.-J.; Han, Y.Y. Continuous cooling transformation behaviors of CLAM steel. J. Nucl. Mater. 2013, 442. [Google Scholar] [CrossRef]
- Maisuradze, M.V.; Ryzhkov, M.A. Thermal Stabilization of Austenite during Quenching and Partitioning of Austenite for Automotive Steels. Metallurgist 2018, 62, 337–347. [Google Scholar] [CrossRef]
- Xu, L.; Chen, L.; Sun, W. Effects of soaking and tempering temperature on microstructure and mechanical properties of 65Si2MnWE spring steel. Vacuum 2018. [Google Scholar] [CrossRef]
- Shin, J.C.; Lee, S.; Hwa Ryu, J. Correlation of microstructure and fatigue properties of two high-strength spring steels. Int. J. Fatigue 1999, 21, 571–579. [Google Scholar] [CrossRef]
- Matjeke, V.J.; Mukwevho, G.; Van Der Merwe, J.W. Effect of putrefied quenching oil on the transformation behaviour of railway spring steel. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018. [Google Scholar] [CrossRef]
- Goulas, C. Developing Novel Heat Treatments for Automotive Spring Steels: Phase Transformations, Microstructure and Performance. Delft Univ. Technol. 2018. [Google Scholar] [CrossRef]
- Ji, S.; Huang, H.; Huang, G.; Qin, X.; Shui, G. Experimental study on fatigue damage of train K6 spring. Przglad. Elektrotechniczny 2013, 89, 131–133. [Google Scholar]
- Huang, W.; Lei, L.; Fang, G. Microstructure evolution of hot work tool steel 5CrNiMoV throughout heating, deformation and quenching. Mater. Charact. 2020, 163. [Google Scholar] [CrossRef]
- Manuel, F.; Cerda, C. Third Generation Advanced High Strength Steels via Ultrafast Heating; Ghent University: Ghent, Belgium, 2017. [Google Scholar]
- Avner, S.H. Introduction to Physical Metallurgy; McGraw Hill Inc. Publisher: New York, NY, USA, 1998. [Google Scholar]
Temperature (°C) | Cooling Rate (°C/s) | Heating Rate (°C/s) | Soaking Time (h) |
---|---|---|---|
860 | 0.01 | 2 | 45 |
860 | 0.1 | 2 | 45 |
860 | 1 | 2 | 45 |
860 | 10 | 2 | 45 |
860 | 20 | 2 | 45 |
860 | 30 | 2 | 45 |
860 | 100 | 2 | 45 |
Element | % C | % Si | % Mn | % P | % S | % Cr | % Ni | % Cu | % Mo | % V |
---|---|---|---|---|---|---|---|---|---|---|
55Cr3 | 0.58 | 0.32 | 0.92 | 0.013 | 0.004 | 0.79 | 0.06 | 0.10 | 0.01 | 0.01 |
54SiCr6 | 0.56 | 1.33 | 0.71 | 0.014 | 0.002 | 0.75 | 0.01 | 0.01 | 0.00 | 0.06 |
52CrMoV4 | 0.55 | 0.28 | 0.92 | 0.012 | 0.007 | 1.05 | 0.01 | 0.01 | 0.19 | 0.11 |
Identity | Andrew’s Equation | Dilatometer | DSC | JMatPro | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Transition Temperature (°C) | Ac1 | Ac3 | Ms | Ac1 | Ac3 | Ms | Ac1 | Ms | Ac1 | Ac3 | Ms |
55Cr3 | 726 | 740 | 255 | 753 | 818 | 218 | 751 | 225 | 738 | 741 | 253 |
54SiCr6 | 759 | 945 | 271 | 793 | 846 | 235 | 777 | 235 | 767 | 775 | 260 |
52CrMoV4 | 727 | 909 | 264 | 772 | 823 | 216 | 762 | 227 | 749 | 750 | 266 |
Micro-Vickers Hardness Tester | |||
---|---|---|---|
Cooling Rate (°C/s) | 55Cr3 | 54SiCr6 | 52CrMoV4 |
100 | 810 ± 36 | 802 ± 16 | 770 ± 11 |
30 | 827 ± 7 | 791 ± 9 | 770 ± 13 |
20 | 821 ± 10 | 791 ± 17 | 761 ± 41 |
10 | 820 ± 6 | 762 ± 17 | 739 ± 36 |
1 | 547 ± 126 | 336 ± 11 | 629 ± 137 |
0.1 | 299 ± 6 | 285 ± 11 | 296 ± 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matjeke, V.J.; van der Merwe, J.W.; Vithi, N.L. Determination of Critical Transformation Temperatures for the Optimisation of Spring Steel Heat Treatment Processes. Metals 2021, 11, 1014. https://doi.org/10.3390/met11071014
Matjeke VJ, van der Merwe JW, Vithi NL. Determination of Critical Transformation Temperatures for the Optimisation of Spring Steel Heat Treatment Processes. Metals. 2021; 11(7):1014. https://doi.org/10.3390/met11071014
Chicago/Turabian StyleMatjeke, Velaphi Jeffrey, Josias Willem van der Merwe, and Nontuthuzelo Lindokuhle Vithi. 2021. "Determination of Critical Transformation Temperatures for the Optimisation of Spring Steel Heat Treatment Processes" Metals 11, no. 7: 1014. https://doi.org/10.3390/met11071014
APA StyleMatjeke, V. J., van der Merwe, J. W., & Vithi, N. L. (2021). Determination of Critical Transformation Temperatures for the Optimisation of Spring Steel Heat Treatment Processes. Metals, 11(7), 1014. https://doi.org/10.3390/met11071014