Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zwicker, U. Titan and Titanlegiarungen; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Tomashev, N.D. Titanium and Its Corrosion-Resistant Alloys; Metallurgiya: Moscow, Soviet Union, 1985. (In Russian) [Google Scholar]
- Fokin, M.N.; Ruskol, Y.S.; Mosolov, A.V. Titanium and Its Alloys in Chemical Industry; Khimiya: Leningrad, Soviet Union, 1978. (In Russian) [Google Scholar]
- Nakagawa, M.; Matsua, S.; Udoh, K. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solution. Dent. Mater. J. 2001, 20, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Matono, Y.; Matsuya, S.; Udoh, K. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments. Biomaterials 2005, 26, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.B.; Hu, H.X.; Zheng, Y.G.; Ke, W.; Qiao, Y.X. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corros. Sci. 2016, 103, 50–65. [Google Scholar] [CrossRef]
- Grishkov, V.; Kopylov, V.; Lotkov, A.; Latushkina, S.; Baturin, A.; Girsova, N.; Timkin, V.; Zhapova, D. Effect of warm equal channel angular pressing on the structure and mechanical properties of Ti0.16Pd0.14Fe (wt.%) alloy. Rev. Adv. Mater. Sci. 2019, 58, 22–31. [Google Scholar] [CrossRef]
- Liu, B.; Zhow, Q.; Qu, R.-F.; Chang, W.-T. Effect of microstructure on corrosion resistance of CP-Ti and Ti-0.2Pd. Chin. J. Nonferrous Met. 2015, 25, 959–966. [Google Scholar]
- Rodrigues, D.C.; Urban, R.M.; Jacobs, J.J.; Gilbert, J.L. In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants. J. Biomed Mater. Res. B Appl. Biomater. 2009, 88, 206–219. [Google Scholar] [CrossRef] [Green Version]
- Ervin Tal-Gutelmacher and Dan Eliezer. Hydrogen-assisted degradation of titanium based alloys. Mater. Trans. 2004, 45, 1594–1600. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, K.; Ichikawa, T.; Murakami, H.; Miyamoto, Y.; Asaoka, K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials 2002, 23, 2459–2465. [Google Scholar] [CrossRef]
- Greene, C.A.; Henry, A.J.; Brossia, C.S.; Ahn, T.V. Evaluation of the passible susceptibility of titanium Grade 7 to hydrogen embrittlement in geologic repository environment. Mat. Res. Soc. Symp. Proc. 2001, 663, 1–9. [Google Scholar]
- Murzinova, M.A.; Salishchev, G.A. Effect of decrease of hydride-induced embrittlement in nanocrystalline titanium. Adv. Eng. Mater. 2010, 12, 765–768. [Google Scholar] [CrossRef]
- Kolobov, Y.R.; Torganchuk, V.I.; Fokin, V.N.; Tarasov, B.P. Structural features of the hydride phase formation in nanostructured titanium. IOP Conf. Ser. Mater. Sci. Eng. 2015, 81, 012053. [Google Scholar] [CrossRef] [Green Version]
- Tamura, M.; Noma, M.; Yamashita, M. Characteristic change of hydrogen permeation in stainless steel plate by BN coating. Surf. Coat. Technol. 2014, 260, 148–154. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Coban, A.; Kahraman, R.; Khaled, M.M. Hydrogen embrittlement of Ti-6Al-4V alloy with surface modification dy TiN coating. Int. J. Hydrogen Energy 1998, 23, 483–489. [Google Scholar] [CrossRef]
- Shan, C.; Wu, A.; Li, Y.; Zhao, Z.; Chen, Q.; Huang, Q.; Shi, S. The behavior of diffusion and permeation of tritium through 316L stainless steel with coating of TiC and TiC+TiN. J. Nucl. Mater. 1992, 191, 221–225. [Google Scholar] [CrossRef]
- Van Hove, R.P.; Sierevelt, I.N.; Van Royen, B.J.; Nolte, P.A. Titanium-nitride coating of orthopaedic implants: A review of literature. Biomed. Tes. Int. 2015, 2015, 485975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obrosov, A.; Sutygina, A.; Volinsky, A.; Manakhov, A.; Weiβ, S.; Kashkarov, E. Effect of Hydrogen exposure on mechanical and tribological behavior of CrxN coating depsited at different pressures on IN718. Materials 2017, 10, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Em, V.T. Structure and Phase Transformations of Interstitial Alloys of Transition Metals of the IV-V Groups. Ph.D. Thesis, Sciences of the Nuclear Physics Institute of the Uzbek SSR AS, Tashkent, Soviet Union, 1988. (In Russian). [Google Scholar]
- Tamura, M. Hydrogen permeation characteristics of TiN coated stainless steel. J. Mater. Sci. Eng. A 2015, 5, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Tamura, M.; Eguchi, T. Nanostructured thin films for hydrogen-permeation barrier. J. Vac. Sci. Technol. A 2015, 33, 041503-1–041503-6. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.-Y.; Chang, C.-L.; Hsu, C.-H.; Lin, H.-N. Sinthesis of (Ti,Zr)N hard coatings by unbalanced magnetron sputtering. Surf. Coat. Technol. 2000, 130, 64–68. [Google Scholar] [CrossRef]
- Uglov, V.V.; Anishchik, A.M.; Khodasevich, V.V.; Prikhodko, Z.L.; Zlotski, S.V.; Abadias, G.; Dub, S.N. Structural characterization and mechanical properties of Ti-Zr-N coatings depsited by vacuum arc. Surf. Coat. Technol. 2004, 180–181, 519–525. [Google Scholar] [CrossRef]
- Ramana, J.V.; Kumar, S.; David, C.; Raju, V.S. Structure, Composition and microhardness of (Ti,Zr)N and (Ti,Al)N coatings prepared by DS magnetron sputtering. Mater. Lett. 2004, 58, 2553–2558. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Huang, J.-H.; Yu, G.-P. Microstructure and corrosion resistance of nanocrystalline TiZrN films jn AISI 304 stainless substrate. J. Vac. Sci. Technol. A 2010, 28, 774–778. [Google Scholar] [CrossRef]
- Latushkina, S.D.; Lotkov, A.I.; Kopylov, V.I.; Posylkina, O.I.; Shkrobot, V.A. Formation of protective vacuum-plasma TiZrN coating on titanium alloys after equal channel angular pressing. In Proceedings of the 13th International Conference Interraction of Radiation with Solids, Minsk, Belarus, 30 September–3 October 2019. [Google Scholar]
- Knotek, O.; Barimani, A. On spinodal decomposition in magnetron-sputtered (Ti,Zr) nitride and carbide thin films. Thin Solid Films 1989, 174, 51–56. [Google Scholar] [CrossRef]
- Tornton, J.A. High rate thick film growth. Ann. Res. Mater. Sci. 1977, 7, 239–260. [Google Scholar] [CrossRef]
- Boone, D.H.; Strangman, T.E.; Wilson, L.W. Some effects of structure and composition on properties of electron beam vapor deposited coatings for gas turbine superalloys. J. Vac. Sci. Technol. 1974, 11, 641–646. [Google Scholar] [CrossRef]
Specimens | Substrate Structure | Cathode Arc Currents, A | Deposition Time, min | Mode | |
---|---|---|---|---|---|
Ti | Zr | ||||
TZ1SMC | SMC | 50 | 50 | 90 | Immobile specimens perpendicular to the beam |
TZ2M | microcrystalline | 80 | 80 | 75 | Rotation of tables with specimens |
TZ2SMC | SMC | ||||
TZ3M | microcrystalline | 60 | 100 | 75 | Rotation of tables with specimens |
TZ3SMC | SMC | ||||
TNM | microcrystalline | 60 | - | 75 | Rotation of tables with specimens |
TNSMC | SMC |
Specimens | Ti, at.% | Zr, at.% | N, at.% | Zr/Ti | a, Å |
---|---|---|---|---|---|
TZ1SMC | 23.3 | 31.2 | 45.6 | 1.34 | 4.496 |
TZ2M | 21.2 | 27.2 | 51.5 | 1.28 | 4.479 |
TZ2SMC | |||||
TZ3M | 4.7 | 47.7 | 47.7 | 10.15 (~ZrN) | 4.575 |
TZ3SMC | |||||
TNM | 50.2 | - | 49.8 | 0.00 (TiN) | 4.245 |
TNSMC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotkov, A.; Latushkina, S.; Kopylov, V.; Grishkov, V.; Baturin, A.; Girsova, N.; Zhapova, D.; Timkin, V. Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy. Metals 2021, 11, 1332. https://doi.org/10.3390/met11091332
Lotkov A, Latushkina S, Kopylov V, Grishkov V, Baturin A, Girsova N, Zhapova D, Timkin V. Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy. Metals. 2021; 11(9):1332. https://doi.org/10.3390/met11091332
Chicago/Turabian StyleLotkov, Aleksandr, Svetlana Latushkina, Vladimir Kopylov, Victor Grishkov, Anatoly Baturin, Natalia Girsova, Dorzhima Zhapova, and Victor Timkin. 2021. "Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy" Metals 11, no. 9: 1332. https://doi.org/10.3390/met11091332
APA StyleLotkov, A., Latushkina, S., Kopylov, V., Grishkov, V., Baturin, A., Girsova, N., Zhapova, D., & Timkin, V. (2021). Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy. Metals, 11(9), 1332. https://doi.org/10.3390/met11091332