Dirlik and Tovo-Benasciutti Spectral Methods in Vibration Fatigue: A Review with a Historical Perspective
Abstract
:1. Introduction
2. Random Processes in Frequency Domain: Spectral Properties and Fatigue Damage
2.1. Spectral Properties
2.2. Fatigue Damage
3. Dirlik Method (1985)
4. Tovo–Benasciutti (TB) Method (2002, 2005)
5. Area of Application of Spectral Methods
6. Comparison of Spectral Methods
- Wirsching and Light (1980) [22].
- Ortiz and Chen (1987) [72].
- Zhao and Baker (1992) [38].
- Steinberg three-band method (2000) [73].
- Empirical method (2006) [17].
- Gao and Moan (2008) [37].
- Lalanne (2009) [76].
6.1. Comparison between Dirlik and TB Method
6.2. Comparison among Spectral Methods (Numerical Simulations)
6.3. Comparison with Experiments
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matsuishi, M.; Endo, T. Fatigue of metals subjected to varying stress. Presented to Japan Society of Mechanical Engineers, Fukuoka, Japan, March 1968. In The Rainflow Method in Fatigue: The Tatsuo Endo Memorial Volume; Murakami, Y., Ed.; Butterworth-Heinemann Ltd.: Oxford, UK, 1992. [Google Scholar]
- ASTM E1049–85 (2017) Standard Practices for Cycle Counting in Fatigue Analysis; ASTM International: West Conshohocken, PA, USA, 2017; Available online: www.astm.org (accessed on 23 August 2021).
- Fatemi, A.; Yang, L. Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials. Int. J. Fatigue 1998, 20, 9–34. [Google Scholar] [CrossRef]
- MATLAB (2021), Version 9.10.0.1602886 (R2021a); The MathWorks Inc.: Natick, MA, USA, 2021; Available online: https://it.mathworks.com (accessed on 3 August 2021).
- Brodtkorb, P.A.; Johannesson, P.; Lindgren, G.; Rychlik, I.; Rydén, J.; Sjö, E. WAFO—A Matlab toolbox for analysis of random waves and loads. In Proceedings of the 10th Int. Offshore and Polar Engineering Conference (ISOPE), Seattle, WA, USA, 27 May–2 June 2000; Volume III, pp. 343–350. [Google Scholar]
- Zuccarello, B.; Adragna, N.F. A novel frequency domain method for predicting fatigue crack growth under wide band random loading. Int. J. Fatigue 2007, 29, 1065–1079. [Google Scholar] [CrossRef]
- Mao, W. Development of a spectral method and a statistical wave model for crack propagation prediction in ship structures. J. Ship Res. 2014, 58, 106–116. [Google Scholar] [CrossRef]
- Xue, X.; Chen, N.Z. Fracture mechanics analysis for a mooring system subjected to Gaussian load processes. Eng. Struct. 2018, 162, 188–197. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, X.; Wang, F. Fatigue crack propagation prediction for marine structures based on a spectral method. Ocean Eng. 2018, 163, 706–717. [Google Scholar] [CrossRef]
- Marques, D.E.T.; Vandepitte, D.; Tita, V. Damage detection and fatigue life estimation under random loads: A new structural health monitoring methodology in the frequency domain. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 1622–1636. [Google Scholar] [CrossRef]
- Miles, J.W. On structural fatigue under random loading. J. Aeron. Sci. 1954, 21, 753–762. [Google Scholar] [CrossRef]
- Bendat, J.S. Probability Functions for Random Responses: Prediction of Peaks, Fatigue Damage, and Catastrophic Failures; Report NASA-CR-33; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 1964. [Google Scholar]
- Benasciutti, D. Fatigue Analysis of Random Loadings: A Frequency Domain Approach; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2012; ISBN 9783659123702. [Google Scholar]
- Slavič, J.; Boltezar, M.; Mrsnik, M.; Cesnik, M.; Javh, J. Vibration Fatigue by Spectral Methods. From Structural Dynamics to Fatigue Damage—Theory and Experiments; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Dirlik, D. Application of Computers in Fatigue Analysis. Ph.D. Thesis, University of Warwick, Warwick, UK, 1985. [Google Scholar]
- Benasciutti, D.; Tovo, R. Spectral methods for lifetime prediction under wide-band stationary random processes. Int. J. Fatigue 2005, 27, 867–877. [Google Scholar] [CrossRef]
- Benasciutti, D.; Tovo, R. Comparison of spectral methods for fatigue analysis in broad-band Gaussian random processes. Probab. Eng. Mech. 2006, 21, 287–299. [Google Scholar] [CrossRef]
- Lutes, L.D.; Sarkani, S. Random Vibrations: Analysis of Structural and Mechanical Systems; Elsevier Butterworth-Heinemann: Oxford, UK, 2004. [Google Scholar]
- Troncossi, M.; Pesaresi, E. Analysis of synthesized non-Gaussian excitations for vibration-based fatigue life testing. J. Phys. Conf. Ser. 2019, 1264, 012039. [Google Scholar] [CrossRef] [Green Version]
- Vanmarcke, E.H. Properties of spectral moments with applications to random vibration. J. Eng. Mech. Div.-ASCE 1972, 98(EM2), 425–446. [Google Scholar] [CrossRef]
- Hobbacher, A.F. Recommendations for Fatigue Design of Welded Joints and Components, 2nd ed.; IIW document IIW-1823-07 (ex XIII-2151r4-07/XV-1254r4-07); Springer International Publishing: Heidelberg, Germany, 2016. [Google Scholar]
- Wirsching, P.H.; Light, M.C. Fatigue under wide band random stresses. J. Struct. Div. ASCE 1980, 106, 1593–1607. [Google Scholar] [CrossRef]
- Google Scholar. Available online: https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=dirlik+fatigue&btnG= (accessed on 1 August 2021).
- Shinozuka, M. Monte Carlo solution of structural dynamics. Comput. Struct. 1972, 2, 855–874. [Google Scholar] [CrossRef]
- Shinozuka, M.; Deodatis, G. Simulation of stochastic processes by spectral representation. Appl. Mech. Rev. 1991, 44, 191–204. [Google Scholar] [CrossRef]
- Ibe, O.C. Fundamentals of Applied Probability and Random Processes, 2nd ed.; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Sherratt, F.; Bishop, N.W.M.; Dirlik, T. Predicting fatigue life from frequency domain data. Eng. Integr. 2005, 18, 12–16. [Google Scholar]
- Bouyssy, V.; Naboishikov, S.M.; Rackwitz, R. Comparison of analytical counting methods for Gaussian processes. Struct. Saf. 1993, 12, 35–57. [Google Scholar] [CrossRef]
- Zalaznik, A.; Nagode, M. Frequency based fatigue analysis and temperature effect. Mater. Des. 2011, 32, 4794–4802. [Google Scholar] [CrossRef]
- Zalaznik, A.; Nagode, M. Validation of temperature modified Dirlik method. Comput. Mater. Sci. 2013, 96, 173–179. [Google Scholar] [CrossRef]
- Zalaznik, A.; Nagode, M. Experimental, theoretical and numerical fatigue damage estimation using a temperature modified Dirlik method. Eng. Struct. 2015, 96, 56–65. [Google Scholar] [CrossRef]
- Tovo, R. Cycle distribution and fatigue damage under broad-band random loading. Int. J. Fatigue 2002, 24, 1137–1147. [Google Scholar] [CrossRef]
- Mršnik, M.; Slavič, J.; Boltežar, M. Frequency-domain methods for a vibration-fatigue-life estimation—Application to real data. Int. J. Fatigue 2013, 47, 8–17. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Han, Q.; Li, J.; Lacidogna, G. Research on the scope of spectral width parameter of frequency domain methods in random fatigue. Appl. Sci. 2020, 10, 4715. [Google Scholar] [CrossRef]
- Benasciutti, D.; Tovo, R. Modelli di previsione del danneggiamento a fatica per veicoli in regime stazionario ed ergodico. In Proceedings of the Italian Association for Stress Analysis (AIAS), Parma, Italy, 18–20 September 2002. (In Italian). [Google Scholar]
- Benasciutti, D.; Tovo, R. Spectral methods for lifetime prediction under wide-band stationary random processes. In Proceedings of the Int. Conference “Cumulative Fatigue Damage”, Seville, Spain, 27–29 May 2003; p. 46. [Google Scholar]
- Gao, Z.; Moan, T. Frequency-domain fatigue analysis of wide-band stationary Gaussian processes using a trimodal spectral formulation. Int. J. Fatigue 2008, 30, 1944–1955. [Google Scholar] [CrossRef]
- Zhao, W.; Baker, M.J. On the probability density function of rainflow stress range for stationary Gaussian processes. Int. J. Fatigue 1992, 14, 121–135. [Google Scholar] [CrossRef]
- Lutes, L.D.; Larsen, C.E. Improved spectral method for variable amplitude fatigue prediction. J. Struct. Eng.-ASCE 1990, 116, 1149–1164. [Google Scholar] [CrossRef]
- Larsen, C.E.; Lutes, L.D. Predicting the fatigue life of offshore structures by the single-moment method. Probab. Eng. Mech. 1991, 6, 96–108. [Google Scholar] [CrossRef]
- Yaich, A.; El Hami, A. Numerical and experimental investigation on multiaxial fatigue damage estimation of Qualmark chamber test table structures under random vibrations. Mech. Based Des. Struct. Mech. 2021. published online. [Google Scholar] [CrossRef]
- Niesłony, A.; Macha, E. Spectral Method in Multiaxial Random Fatigue; Springer: Berlin, Germany, 2007. [Google Scholar]
- Bel Knani, K.; Benasciutti, D.; Signorini, A.; Tovo, R. Fatigue damage assessment of a car body-in-white using a frequency-domain approach. Int. J. Mater. Prod. Technol. 2007, 30, 172–198. [Google Scholar] [CrossRef]
- Valsamos, G.; Theodosiou, C.; Natsiavas, S. Periodic steady state response and fatigue analysis of a nonlinear city bus model. In Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, CA, USA, 30 August–2 September 2009. [Google Scholar] [CrossRef]
- Braccesi, C.; Cianetti, F.; Lori, G.; Pioli, D. Random multiaxial fatigue: A comparative analysis among selected frequency and time domain fatigue evaluation methods. Int. J. Fatigue 2015, 74, 107–118. [Google Scholar] [CrossRef]
- Braccesi, C.; Cianetti, F.; Tomassini, L. An innovative modal approach for frequency domain stress recovery and fatigue damage evaluation. Int. J. Fatigue 2016, 91, 382–396. [Google Scholar] [CrossRef]
- Nascimento, V.; Teixeira, G.; Clarke, T. Structural validation of a pneumatic brake actuator using method for fatigue life calculation. Eng. Fail. Anal. 2020, 118, 104837. [Google Scholar] [CrossRef]
- Kong, Y.S.; Abdullah, S.; Schramm, D.; Omar, M.Z.; Haris, S.M. Vibration fatigue analysis of carbon steel coil spring under various road excitations. Metals 2018, 8, 617. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Liu, J.; Zhang, Q.; Yang, H.; Tang, M. Fatigue life evaluation and failure analysis of light beam direction adjusting mechanism of an automobile headlight exposed to random loading. Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 2019, 233, 224–231. [Google Scholar] [CrossRef]
- Cima, M.; Solazzi, L. Experimental and analytical study of random fatigue, in time and frequencies domain, on an industrial wheel. Eng. Fail. Anal. 2021, 120, 105029. [Google Scholar] [CrossRef]
- Ugras, R.C.; Alkan, O.K.; Serkan Orhan, S.; Kutlu, M.; Mugan, A. Real time high cycle fatigue estimation algorithm and load history monitoring for vehicles by the use of frequency domain methods. Mech. Syst. Signal Proc. 2019, 118, 290–304. [Google Scholar] [CrossRef]
- DNV GL. Class Guideline DNVGL-CG-0129, Fatigue Assessment of Ship Structures; DNV GL: Oslo, Norway, 2015; Available online: www.dnv.com (accessed on 23 August 2021).
- Bittar Filho, J.H.; Lourenço de Souza, M.I.; Pasqualino, I.P. Comparison of spectral fatigues methodologies using equivalent stresses obtained by Mises and Battelle applied to a semi-submersible platform. In Practical Design of Ships and Other Floating Structures; Okada, T., Suzuki, K., Kawamura, Y., Eds.; Springer: Singapore, 2019; Volume 64, pp. 580–607. [Google Scholar] [CrossRef]
- Lynch, J.P.; Law, K.H.; O’Connor, S. Probabilistic & Reliability-Based Health Monitoring Strategies for High-Speed Naval Vessels; Report N00014-09-1-0567; Office of Naval Research (ONR): Arlington, VA, USA, 2012. [Google Scholar]
- Yeter, B.; Garbatov, Y.; Guedes Soares, C. Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures. Int. J. Fatigue 2016, 87, 71–80. [Google Scholar] [CrossRef]
- Böhm, M.; Kowalski, M. Fatigue life estimation of explosive cladded transition joints with the use of the spectral method for the case of a random sea state. Mar. Struct. 2020, 71, 102739. [Google Scholar] [CrossRef]
- Ragan, P.; Lance, M. Comparing estimates of wind turbine fatigue loads using time-domain and spectral methods. Wind Eng. 2007, 31, 83–99. [Google Scholar] [CrossRef]
- Chen, X. Analysis of crosswind fatigue of wind-excited structures with nonlinear aerodynamic damping. Eng. Struct. 2014, 74, 145–156. [Google Scholar] [CrossRef]
- Huo, T.; Tong, L. An approach to wind-induced fatigue analysis of wind turbine tubular towers. J. Constr. Steel. Res. 2020, 166, 105917. [Google Scholar] [CrossRef]
- Fekih, L.B.; Kouroussis, G.; Verlinden, O. Spectral-based fatigue assessment of ball grid arrays under aerospace vibratory environment. Key Eng. Mater. 2013, 569–570, 425–432. [Google Scholar] [CrossRef]
- Xia, J.; Li, G.; Li, B.; Cheng, L.; Zhou, B. Fatigue life prediction of Package-on-Package stacking assembly under random vibration loading. Microelectron. Reliab. 2017, 71, 111–118. [Google Scholar] [CrossRef]
- Xia, J.; Yang, L.; Liu, Q.; Peng, Q.; Cheng, L.; Li, G. Comparison of fatigue life prediction methods for solder joints under random vibration loading. Microelectron. Reliab. 2019, 95, 58–64. [Google Scholar] [CrossRef]
- Gao, D.Y.; Yao, W.X.; Wen, W.D.; Huang, J. Equivalent spectral method to estimate the fatigue life of composite laminates under random vibration loadings. Mech. Compos. Mater. 2021, 57, 101–114. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Y.; Wu, Z.; Yao, L.; Zhang, Y.; Zhou, S.; Liu, Y. An investigation on residual strength and failure probability prediction for plain weave composite under random fatigue loading. Int. J. Fatigue 2019, 120, 267–282. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Yang, C.; Liu, Y.; Chen, X.; Yao, L.; Gao, W. Prediction on fatigue properties of the plain weave composite under broadband random loading. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 1515–1532. [Google Scholar] [CrossRef]
- Böhm, M.; Głowacka, K. Fatigue life estimation with mean stress effect compensation for lightweight structures—The case of GLARE 2 composite. Polymers 2020, 12, 251. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, G.; Ji, W.; Lee, Y.S.; Jang, S.; Shin, C.M. Random vibration fatigue analysis of a multi-material battery pack structure for an electric vehicle. Funct. Compos. Struct. 2021, 3, 025006. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, S.; Tan, Z.; Fei, Q. Temperature-dependence of acoustic fatigue life for thermal protection structures. Theor. Appl. Mech. Letters 2014, 4, 021005. [Google Scholar] [CrossRef] [Green Version]
- Česnik, M.; Slavič, J.; Boltežar, M. Assessment of the fatigue parameters from random vibration testing: Application to a rivet joint. Strojniski Vestn.-J. Mech. Eng. 2016, 62, 471–482. [Google Scholar] [CrossRef]
- Go, E.-S.; Kim, M.-G.; Kim, I.-G.; Kim, M.-S. Fatigue life prediction in frequency domain using thermal-acoustic loading test results of titanium specimen. J. Mech. Sci. Technol. 2020, 34, 4015–4024. [Google Scholar] [CrossRef]
- Ding, H.; Zhu, Q.; Zhang, P. Fatigue damage assessment for concrete structures using a frequency-domain method. Math. Probl. Eng. 2014, 2014, 407193. [Google Scholar] [CrossRef]
- Ortiz, K.; Chen, N.K. Fatigue damage prediction for stationary wide-band stresses. In Reliability and Risk Analysis in Civil Engineering, Proceedings of the 5th International Conference on the Applications of Statistics and Probability in Soil and Structural Engineering (ICASP5), Vancouver, Canada, 25–29 May 1987; Institute for Risk Research, University of Waterloo: Waterloo, ON, Canada, 1987. [Google Scholar]
- Steinberg, D.S. Vibration Analysis for Electronic Equipment, 3rd ed.; Wiley-Interscience: New York, NY, USA, 2000. [Google Scholar]
- Fu, T.-T.; Cebon, D. Predicting fatigue lives for bi-modal stress spectral densities. Int. J. Fatigue 2000, 22, 11–21. [Google Scholar] [CrossRef]
- Benasciutti, D.; Tovo, R. On fatigue damage assessment in bimodal random processes. Int. J. Fatigue 2007, 29, 232–244. [Google Scholar] [CrossRef]
- Lalanne, C. Mechanical Vibration and Shock; Hermes Penton Science: London, UK, 2009. [Google Scholar]
- Larsen, C.E.; Irvine, T. A review of spectral methods for variable amplitude fatigue prediction and new results. Procedia Eng. 2015, 101, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Li, J.; Xu, J.; Ye, F.; Carpinteri, A.; Lacidogna, G. A new frequency domain method for random fatigue life estimation in a wide-band stationary Gaussian random process. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 97–113. [Google Scholar] [CrossRef] [Green Version]
- Niesłony, A. Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method. J. Theor. Appl. Mech. 2010, 48, 233–254. [Google Scholar]
- Niesłony, A.; Růžička, M.; Papuga, J.; Hodr, A.; Balda, M.; Svoboda, J. Fatigue life prediction for broad-band multiaxial loading with various PSD curve shapes. Int. J. Fatigue 2012, 44, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Gadolina, I.V.; Makhutov, N.A.; Erpalov, A.V. Varied approaches to loading assessment in fatigue studies. Int. J. Fatigue 2021, 144, 106035. [Google Scholar] [CrossRef]
- Benasciutti, D.; Sherratt, F.; Cristofori, A. Recent developments in frequency domain multi-axial fatigue analysis. Int. J. Fatigue 2016, 91, 397–413. [Google Scholar] [CrossRef]
- Carpinteri, A.; Spagnoli, A.; Vantadori, S. A review of multiaxial fatigue criteria for random variable amplitude loads. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1007–1036. [Google Scholar] [CrossRef]
- Benasciutti, D. Confidence interval of the ‘single-moment’ fatigue damage calculated from an estimated power spectral density. Int. J. Fatigue 2021, 145, 106131. [Google Scholar] [CrossRef]
PSD | c | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
b = 3 | b = 5 | b = 7 | |||||||||
Narrow band | 1.05 | n.a. | 0 | 19.50 | 0.9999 | 0.9996 | 20 | 19.99 | 0.9999 | 0.9997 | 0.9996 |
1.10 | n.a. | 0 | 19.01 | 0.9996 | 0.9985 | 20 | 19.97 | 0.999 | 0.999 | 0.998 | |
Band limited | 1.50 | n.a. | 0 | 15.50 | 0.993 | 0.975 | 20 | 19.50 | 0.991 | 0.981 | 0.969 |
5 | n.a. | 0 | 5.14 | 0.933 | 0.827 | 20 | 16.54 | 0.980 | 0.920 | 0.867 | |
20 | n.a. | 0 | 1.29 | 0.886 | 0.765 | 20 | 15.29 | 0.998 | 0.932 | 0.875 | |
∞ | n.a. | 0 | 0.0 | 0.866 | 0.745 | 20 | 14.91 | 1.00 | 0.943 | 0.885 | |
Bimodal | 1.1/0.9 | 2.981 | 0.098 | 8.258 | 0.900 | 0.600 | 20 | 12.00 | 0.983 | 0.963 | 0.954 |
1.1/0.9 | 7.408 | 0.006 | 4.677 | 0.900 | 0.300 | 20 | 6.00 | 0.929 | 0.966 | 0.964 | |
1.1/0.9 | 3.233 | 0.240 | 6.409 | 0.850 | 0.600 | 20 | 12.00 | 0.996 | 0.944 | 0.922 | |
1.1/0.9 | 7.176 | 0.050 | 2.920 | 0.700 | 0.300 | 20 | 6.00 | 1.000 | 0.989 | 0.992 | |
1.1/0.9 | 11.855 | 0.025 | 1.705 | 0.600 | 0.200 | 20 | 4.00 | 1.035 | 1.025 | 1.026 | |
1.1/0.9 | 11.715 | 0.051 | 1.628 | 0.550 | 0.250 | 20 | 5.00 | 1.060 | 1.029 | 1.027 | |
1.1/0.9 | 19.442 | 0.014 | 1.001 | 0.503 | 0.139 | 20 | 2.78 | 1.062 | 1.052 | 1.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirlik, T.; Benasciutti, D. Dirlik and Tovo-Benasciutti Spectral Methods in Vibration Fatigue: A Review with a Historical Perspective. Metals 2021, 11, 1333. https://doi.org/10.3390/met11091333
Dirlik T, Benasciutti D. Dirlik and Tovo-Benasciutti Spectral Methods in Vibration Fatigue: A Review with a Historical Perspective. Metals. 2021; 11(9):1333. https://doi.org/10.3390/met11091333
Chicago/Turabian StyleDirlik, Turan, and Denis Benasciutti. 2021. "Dirlik and Tovo-Benasciutti Spectral Methods in Vibration Fatigue: A Review with a Historical Perspective" Metals 11, no. 9: 1333. https://doi.org/10.3390/met11091333
APA StyleDirlik, T., & Benasciutti, D. (2021). Dirlik and Tovo-Benasciutti Spectral Methods in Vibration Fatigue: A Review with a Historical Perspective. Metals, 11(9), 1333. https://doi.org/10.3390/met11091333