Microstructure Refinement of 301 Stainless Steel via Thermomechanical Processing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Transformation
3.2. Microstructure
3.3. Mechanical Properties
4. Conclusions
- (i)
- After three TMP cycles, the 0.15 strain scheme yielded the highest increase in the martensitic transformation to about 99 vol.%., resulting in an entirely austenitic structure upon annealing, with an average grain size of 1.9 µm and a HABs proportion of 64 vol.%.
- (ii)
- Annealing produced a bimodal grain distribution of the austenitic phase for the three schemes, mainly consisting of fine reverted grains (from the α′-martensite structure) and coarse recrystallized grains (from the retained austenite structure). The bimodal grain distribution was less present in samples of the 0.30 strain scheme and most pronounced for samples processed by three cycles of the 0.15 strain scheme.
- (iii)
- During subzero deformation, the tensile behavior is generally characterized by initial strain hardening by the slip (stage I), followed by a remarkable increase in the strain hardening rate due to the α′-strain-induced martensitic transformation (stage II). The α′-martensite banded structure is broken by further deformation to high values of strain, resulting in dislocation-cell-type martensite. The change in the mechanism of α′-martensite formation/deformation is marked by stage III hardening, characterized by a decrease in the strain hardening rate. Stage III hardening is also found to significantly lower the hardness enhancement of deformed samples subjected to multiple cycles.
- (iv)
- The optimal way to achieve reversion annealing is to induce martensitic phase transformation during stage II hardening via a small to medium strain of multi-cycle TMP rather than large deformation in stage III hardening using single-cycle TMP. With the increase in the number of cycles, it is possible to have a massive formation of martensite during stage II hardening and subsequently intense grain refinement upon reversion annealing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, J.; Gonçalves, R.; Choi, Y.T.; Lopes, J.G.; Yang, J.; Schell, N.; Kim, H.S.; Oliveira, J.P. Microstructure and mechanical properties of gas metal arc welded CoCrFeMnNi joints using a 308 stainless steel filler metal. Scr. Mater. 2022, 222, 115053. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Shamsolhodaei, A.; Shen, J.; Lopes, J.G.; Gonçalves, R.M.; de Brito Ferraz, M.; Piçarra, L.; Zeng, Z.; Schell, N.; Zhou, N.; et al. Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steel. Mater. Des. 2022, 219, 110717. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Escobar, J.D.; Shen, J.; Duarte, V.R.; Ribamar, G.G.; Avila, J.A.; Maawad, E.; Schell, N.; Santos, T.G.; Oliveira, J.P. Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysis. Addit. Manuf. B 2021, 48, 102428. [Google Scholar] [CrossRef]
- Maki, T. Stainless steel: Progress in thermomechanical treatment. Curr. Opin. Solid State Mater. Sci. 1997, 2, 290–295. [Google Scholar] [CrossRef]
- Raj, A.K.; Kumar, J.S.; Padmanabhan, K.A. Martensitic transformation and plastic flow in metastable 2.5 wt.% nickel austenitic stainless steel sheets. Mater. Lett. 1999, 38, 386–390. [Google Scholar]
- Padilha, A.F.; Plaut, R.L.; Rios, P.R. Annealing of cold-worked austenitic stainless steels. ISIJ Int. 2003, 43, 135–143. [Google Scholar] [CrossRef]
- Takaki, S.; Tanimoto, S.K.; Tomimura, K.; Tokunaga, Y. Strengthening of Metastable 16-10 Austenitic Stainless Steel by Ultra Grain Refining. Iron Steel Inst. Jpn. 1988, 74, 1058–1064. [Google Scholar] [CrossRef] [Green Version]
- Tomimura, K.; Takaki, S.; Tokunaga, Y. Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels. ISIJ Int. 1991, 31, 1431–1437. [Google Scholar] [CrossRef] [Green Version]
- Mirzadeh, H.; Najafizadeh, A. Modeling the reversion of martensite in the cold worked AISI 304 stainless steel by artificial neural networks. Mater. Des. 2009, 30, 570–573. [Google Scholar] [CrossRef]
- Di Schino, A.; Salvatori, I.; Kenny, J.M. Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel. J. Mater. Sci. 2002, 37, 4561–4565. [Google Scholar] [CrossRef]
- Di Schino, A.; Barteri, M.; Kenny, J.M. Development of ultra fine grain structure by martensitic reversion in stainless steel. J. Mater. Sci. Lett. 2002, 21, 751–753. [Google Scholar] [CrossRef]
- Tao, K.; Choo, H.; Li, H.; Clausen, B.; Jin, J.E.; Lee, Y.K. Transformation-induced plasticity in an ultrafine-grained steel: An in situ neutron diffraction study. Appl. Phys. Lett. 2007, 90, 101911. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.S.; Lee, Y.K. Effect of pre-deformation on the tensile properties of a metastable austenitic steel. Scr. Mater. 2008, 59, 47–50. [Google Scholar] [CrossRef]
- Johannsen, D.L.; Kyröläinen, A.; Ferreira, P.J. Influence of annealing treatment on the formation of nano/submicron grain size AISI 301 Austenitic stainless steels. Metall. Trans. A 2006, 37, 2325–2338. [Google Scholar] [CrossRef]
- Rajasekhara, S.; Ferreira, P.J.; Karjalainen, L.P.; Kyröläinen, A. Hall—Petch Behavior in Ultra-Fine-Grained AISI 301LN Stainless Steel. Metall. Trans. A 2007, 38, 1202–1210. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Kumar, B.R.; Somani, M.C.; Karjalainen, L.P. Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels. Scr. Mater. 2008, 59, 79–82. [Google Scholar] [CrossRef]
- Eskandari, M.; Najafizadeh, A.; Kermanpur, A. Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing. Mat. Sci. Eng. A 2009, 519, 46–50. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Nayak, S.; Mali, S.; Shah, J.S.; Somani, M.C.; Karjalainen, L.P. Microstructure and Deformation Behavior of Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Stainless Steel. Metall. Trans. A 2009, 40, 2498–2509. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Nayak, S.; Mali, S.; Shah, J.S.; Somani, M.C.; Karjalainen, L.P. On the Significance of Nature of Strain-Induced Martensite on Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Stainless Steel. Metall. Trans. A 2010, 41, 3–12. [Google Scholar] [CrossRef]
- Kumar, B.R.; Sharma, S. Recrystallization Behavior of a Heavily Deformed Austenitic Stainless Steel During Iterative Type Annealing. Metall. Mater. Trans. A 2014, 45, 6027–6038. [Google Scholar] [CrossRef]
- Sharifian, K.; Mirzadeh, H.; Kheiri, S.; Naghizadeh, M. Two-step annealing treatment for grain refinement of cold-worked AISI 316L stainless steel. Int. J. Mater. Res. 2020, 111, 676–680. [Google Scholar]
- Naghizadeh, M.; Mirzadeh, H. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth. Metall. Mater. Trans. A 2016, 47, 4210–4216. [Google Scholar] [CrossRef]
- Kheiri, S.; Mirzadeh, H.; Naghizadeh, M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mat. Sci. Eng. A 2019, 759, 90–96. [Google Scholar] [CrossRef]
- Kisko, A.; Hamada, A.S.; Talonen, J.; Porter, D.; Karjalainen, L.P. Effects of reversion and recrystallization on microstructure and mechanical properties of Nb-alloyed low-Ni high-Mn austenitic stainless steels. Mater. Sci. Eng. A 2016, 657, 359–370. [Google Scholar] [CrossRef]
- Xu, D.M.; Li, G.Q.; Wan, X.L.; Misra, R.D.K.; Zhang, X.G.; Xu, G.; Wu, K.M. The effect of annealing on the microstructural evolution and mechanical properties in phase reversed 316LN austenitic stainless steel. Mater. Sci. Eng. A 2018, 720, 36–48. [Google Scholar] [CrossRef]
- Niu, G.; Wu, H. Microstructural evolution and mechanical behavior of phase reversion-induced bimodal austenitic steels. Mater. Sci. Eng. A 2020, 772, 138669. [Google Scholar] [CrossRef]
- Kumar, B.R.; Gujral, A. Plastic Deformation Modes in Mono- and Bimodal-Type Ultrafine-Grained Austenitic Stainless Steel. Metallogr. Microstruct. Anal. 2014, 3, 397–407. [Google Scholar] [CrossRef]
- Sabooni, S.; Karimzadeh, F.; Enayati, M.H.; Ngan, A.H.W. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel. Mater. Sci. Eng. A 2015, 636, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Chen, L.; Xing, Z.; Wang, H.; Jin, M.; Chen, X.; Choi, H.; Han, H.N. Tailoring hetero-grained austenite via a cyclic thermomechanical process for achieving ultrahigh strength-ductility in medium-Mn steel. Scr. Mater. 2022, 217, 114767. [Google Scholar] [CrossRef]
- Naghizadeh, M.; Mirzadeh, H. Processing of fine grained AISI 304L austenitic stainless steel by cold rolling and high-temperature short-term annealing. Mater. Res. Express 2018, 5, 056529. [Google Scholar] [CrossRef]
- Järvenpää, A.; Ghosh, S.; Khosravifard, A.; Jaskari, M.; Hamada, A. A new processing route to develop nano-grained structure of a TRIP-aided austenitic stainless-steel using double reversion fast-heating annealing. Mater. Sci. Eng. A 2021, 808, 140917. [Google Scholar] [CrossRef]
- Lee, C.Y.; Yoo, C.S.; Kermanpur, A.; Lee, Y.K. The effects of multi-cyclic thermo-mechanical treatment on the grain refinement and tensile properties of a metastable austenitic steel. J. Alloy. Compd. 2014, 583, 357–360. [Google Scholar] [CrossRef]
- Moallemi, M.; Kermanpur, A.; Najafizadeh, A.; Rezaee, A.; Samaei baghbadorani, H. Formation of nano/ultrafine grain structure in a 201 stainless steel through the repetitive martensite thermomechanical treatment. Mater. Lett. 2012, 89, 22–24. [Google Scholar] [CrossRef]
- Sun, G.S.; Du, L.X.; Hu, J.; Xie, H.; Wu, H.Y.; Misra, R.D.K. Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment. Mater. Charact. 2015, 110, 228–235. [Google Scholar] [CrossRef]
- He, Y.M.; Wang, Y.H.; Guo, K.; Wang, T.S. Effect of carbide precipitation on strain-hardening behavior and deformation mechanism of metastable austenitic stainless steel after repetitive cold rolling and reversion annealing. Mat. Sci. Eng. A 2017, 708, 248–253. [Google Scholar] [CrossRef]
- Sun, G.S.; Du, L.X.; Hu, J.; Misra, R.D.K. Microstructural evolution and recrystallization behavior of cold rolled austenitic stainless steel with dual phase microstructure during isothermal annealing. Mater. Sci. Eng. A 2018, 709, 254–264. [Google Scholar] [CrossRef]
- Al-Fadhalah, K.; Aleem, M. Microstructure Refinement and Mechanical Properties of 304 Stainless Steel by Repetitive Thermomechanical Processing. Metall. Mater. Trans. A 2018, 49, 1121–1139. [Google Scholar] [CrossRef]
- Shrinivas, V.; Varma, S.K.; Murr, L.E. Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling. Metall. Mater. Trans. A 1995, 26, 661–671. [Google Scholar] [CrossRef]
- De, A.; Speer, J.; Matlock, D.; Murdock, D.; Mataya, M.; Comstock, R. Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel. Metall. Trans. A 2006, 37, 1875–1886. [Google Scholar] [CrossRef]
- Sinclair, C.W.; Maréchal, D.; Mithieux, J.D. The effect of grain size on the mechanical response of a metastable austenitic stainless steel. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2013; Volume 7, p. 01010. [Google Scholar]
- Umemoto, M.; Owen, W.S. Effects of austenitizing temperature and austenite grain size on the formation of athermal martensite in an iron-nickel and an iron-nickel-carbon alloy. Metall. Mater. Trans. B 1974, 5, 2041–2046. [Google Scholar] [CrossRef]
- Jun, J.H.; Choi, C.S. Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of γ→ε martensitic transformation in Fe–Mn alloy. Mater. Sci. Eng. A 1998, 257, 353–356. [Google Scholar] [CrossRef]
- Maki, T.; Tomota, Y.; Tamura, I. Effect of Grain Size on the Transformation-Induced Plasticity in Metastable Austenitic Fe-Ni-C Alloy. J. Jpn. Inst. Met. 1974, 38, 871–876. [Google Scholar] [CrossRef]
- Jimenez-Melero, E.; van Dijk, N.; Zhao, L.; Sietsma, J.; Offerman, S.; Wright, J.; van der Zwaag, S. Martensitic transformation of individual grains in low-alloyed TRIP steels. Scr. Mater. 2007, 56, 421–424. [Google Scholar] [CrossRef]
- Kisko, A.; Misra, R.D.K.; Talonen, J.; Karjalainen, L.P. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel. Mater. Sci. Eng. A 2013, 578, 408–416. [Google Scholar] [CrossRef]
- Spencer, K. The Work-Hardening of Austenitic Stainless Steel, Applied to the Fabrication of High-Strength Conductors. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2004. [Google Scholar]
- Somani, M.C.; Juntunen, P.; Karjalainen, L.P.; Misra, R.D.K. Enhanced Mechanical Properties through Reversion in Metastable Austenitic Stainless Steels. Metall. Mater. Trans. A 2009, 40, 729–744. [Google Scholar] [CrossRef]
- Bellier, S.P.; Doherty, R.D. The structure of deformed aluminium and its recrystallization—investigations with transmission Kossel diffraction. Acta Metall. 1977, 25, 521–538. [Google Scholar] [CrossRef]
- Hecker, S.S.; Stout, M.G.; Staudhammer, K.P.; Smith, J.L. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part I. Magnetic Measurements and Mechanical Behavior. Metall. Mater. Trans. A 1982, 13, 619–626. [Google Scholar] [CrossRef]
- Talonen, J.; Hänninen, H.; Nenonen, P.; Pape, G. Effect of strain rate on the strain-induced γ→α′-martensite transformation and mechanical properties of austenitic stainless steels. Metall. Mater. Trans. A 2005, 36, 421–432. [Google Scholar] [CrossRef]
- Petit, B.; Gey, N.; Cherkaoui, M.; Bolle, B.; Humbert, M. Deformation behavior and microstructure/texture evolution of an annealed 304 AISI stainless steel sheet. Experimental and micromechanical modeling. Int. J. Plast. 2007, 23, 323–341. [Google Scholar] [CrossRef]
- Rouseau, D.; Blanc, G.; Tricot, R.; Gueussier, A. Structure Stability under Deformation and at Low Temperatures for Austenitic Stainless Steels with Cr-Ni. Mem. Sci. Rev. Metall. 1970, 67, 315–334. [Google Scholar]
- Tavares, S.M.; Gunderov, D.; Stolyarov, V.; Neto, J.M. Phase transformation induced by severe plastic deformation in the AISI 304L stainless steel. Mater. Sci. Eng. A 2003, 358, 32–36. [Google Scholar] [CrossRef]
- Maréchal, D. Linkage Between Mechanical Properties and Phase Transformations in a 301LN Austenitic Stainless Steel. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 2011. [Google Scholar]
- Hedström, P.; Lienert, U.; Almerb, J.; Odén, M. Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel. Scr. Mater. 2007, 56, 213–216. [Google Scholar] [CrossRef]
- Ma, E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 2003, 49, 663–668. [Google Scholar] [CrossRef]
Scheme No. | Cycle Details |
---|---|
Scheme# 1 (Three cycles) | Cycle 1 (ε = 0.15 at −50 °C + furnace heating at 850 °C/5 min) |
Cycle 2 (ε = 0.15 at −50 °C + furnace heating at 850 °C/5 min) | |
Cycle 3 (ε = 0.15 at −50 °C + furnace heating at 850 °C/5 min) | |
Scheme# 2 (Two cycles) | Cycle 1 (ε = 0.20 at −50 °C + furnace heating at 850 °C/5 min) |
Cycle 2 (ε = 0.20 at −50 °C + furnace heating at 850 °C/5 min) | |
Scheme# 3 (One cycle) | Cycle 1 (ε = 0.30 at −50 °C + furnace heating at 850 °C/5 min) |
Strain | Sample * | γ-Austenite (%) | α′-Martensite (%) | ε-Martensite (%) |
---|---|---|---|---|
ε = 0.30 | Cycle-1 D | 2.6 | 97.2 | 0.227 |
Cycle-1 A | 73.7 | 26.3 | 0.015 | |
ε = 0.20 | Cycle-1 D | 20.3 | 78.4 | 1.33 |
Cycle-1 A | 79.6 | 20.4 | 0.075 | |
Cycle-2 D | 0.28 | 99.7 | 0.015 | |
Cycle-2 A | 98.0 | 1.95 | 0.007 | |
ε = 0.15 | Cycle-1 D | 46.6 | 52.1 | 1.28 |
Cycle-1 A | 71.2 | 28.8 | 0.054 | |
Cycle-2 D | 4.5 | 95.4 | 0.052 | |
Cycle-2 A | 97.9 | 2.03 | 0.111 | |
Cycle-3 D | 1.6 | 98.4 | 0.040 | |
Cycle-3 A | 99.2 | 0.71 | 0.134 |
Sample | Σ3 (%) | Σ9 (%) | Σ27 (%) | CSL (%) | HAB (%) | Grain Size (μm) |
---|---|---|---|---|---|---|
As received | 48.4 | 1.4 | 0.4 | 50.2 | 96.2 | 4.96 |
Strain | Sample | γ-CSL (%) | γ-HAB (%) | α′-HAB (%) | γ-GS (μm) | α′-GS (μm) |
---|---|---|---|---|---|---|
ε = 0.30 | Cycle-1 D | 0.56 | 1.38 | 32.89 | 1.30 | 1.74 |
Cycle-1 A | 22.12 | 55.29 | 17.51 | 2.02 | 1.87 | |
ε = 0.20 | Cycle-1 D | 3.16 | 6.70 | 39.28 | 1.65 | 1.76 |
Cycle-1 A | 12.92 | 25.16 | 6.66 | 2.15 | 1.91 | |
Cycle-2 D | 0.27 | 0.27 | 33.81 | 1.14 | 1.48 | |
Cycle-2 A | 27.12 | 65.31 | 7.15 | 1.76 | 1.63 | |
ε = 0.15 | Cycle-1 D | 5.42 | 10.94 | 39.04 | 2.02 | 1.68 |
Cycle-1 A | 8.48 | 19.98 | 8.64 | 2.68 | 2.37 | |
Cycle-2 D | 1.45 | 2.05 | 34.48 | 1.47 | 1.68 | |
Cycle-2 A | 17.05 | 40.45 | 6.74 | 2.06 | 1.81 | |
Cycle-3 D | 0.50 | 0.68 | 38.78 | 1.44 | 1.52 | |
Cycle-3 A | 23.90 | 63.39 | 2.19 | 1.90 | 1.74 |
Tensile Test Condition | Yield Strength (MPa) | ||
---|---|---|---|
Cycle 1 | Cycle 2 | Cycle 3 | |
ε = 0.30, T = 25 °C | 355 | ? | ? |
ε = 0.15, T = −50 °C | 450 | 445 | 515 |
ε = 0.20, T = −50 °C | 450 | 500 | ? |
ε = 0.30, T = −50 °C | 450 | ? | ? |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Fadhalah, K.J.; Al-Attal, Y.; Rafeeq, M.A. Microstructure Refinement of 301 Stainless Steel via Thermomechanical Processing. Metals 2022, 12, 1690. https://doi.org/10.3390/met12101690
Al-Fadhalah KJ, Al-Attal Y, Rafeeq MA. Microstructure Refinement of 301 Stainless Steel via Thermomechanical Processing. Metals. 2022; 12(10):1690. https://doi.org/10.3390/met12101690
Chicago/Turabian StyleAl-Fadhalah, Khaled J., Yousif Al-Attal, and Muhammad A. Rafeeq. 2022. "Microstructure Refinement of 301 Stainless Steel via Thermomechanical Processing" Metals 12, no. 10: 1690. https://doi.org/10.3390/met12101690
APA StyleAl-Fadhalah, K. J., Al-Attal, Y., & Rafeeq, M. A. (2022). Microstructure Refinement of 301 Stainless Steel via Thermomechanical Processing. Metals, 12(10), 1690. https://doi.org/10.3390/met12101690