Role of Microalloying Elements on Recrystallization Kinetics of Cold-Rolled High Strength Low Alloy Steels
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Initial Microstructure
3.2. Recrystallized Microstructure
3.3. Recrystallization Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kashima, T.; Hashimoto, S.; Mukai, Y. 780 N/mm2 grade hot-rolled high-strength steel sheet for automotive suspension system. JSAE Rev. 2003, 24, 81–86. [Google Scholar] [CrossRef]
- Takahashi, M. Development of High Strength Steels for Automobiles. Nippon Steel Tech. Rep. 2003, 88, 2–7. [Google Scholar]
- Zhang, X.; Loannidou, C.; Ten Brink, G.H.; Navarro-López, A.; Wormann, J.; Campaniello, J.; Dalgliesh, R.M.; van Well, A.A.; Offerman, S.E.; Kranendonk, W.; et al. Microstructure, precipitate and property evolution in cold-rolled Ti-V high strength low alloy steel. Mater. Des. 2020, 192, 108720. [Google Scholar] [CrossRef]
- Chen, C.; Liao, M. Synergistic effects of carbon content and Ti/Mo ratio on precipitation behavior of HSLA steel: Insights from experiment and critical patent analysis. Mater. Des. 2020, 186, 108361. [Google Scholar] [CrossRef]
- Ooi, S.W.; Fourlaris, G. A comparative study of precipitation effects in Ti only and Ti–V Ultra Low Carbon (ULC) strip steels. Mater. Charact. 2006, 56, 214–226. [Google Scholar] [CrossRef]
- Cahn, J.W. The impurity-drag effect in grain boundary motion. Acta Metall. 1962, 10, 789–798. [Google Scholar] [CrossRef]
- Hillert, M.; Sundman, B. A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys. Acta Metall. 1976, 24, 731–743. [Google Scholar] [CrossRef]
- Hersent, E.; Marthinsen, K.; Nes, E. On the Effect of Atoms in Solid Solution on Grain Growth Kinetics. Metall. Mater. Trans. A 2014, 45, 4882–4890. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, C.R.; Zurob, H.S.; Sinclair, C.W.; Brechet, Y.J.M. The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels. Scr. Mater. 2008, 59, 635–637. [Google Scholar] [CrossRef]
- Kulakov, M.; Poole, W.J.; Militzer, M. The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP600 Steel. Metall. Mater. Trans. A 2013, 44, 3564–3576. [Google Scholar] [CrossRef]
- Bellavoine, M.; Dumont, M.; Drillet, J.; Hébert, V.; Maugis, P. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization during Annealing of Dual-Phase Steels. Metall. Mater. Trans. A 2018, 49, 2865–2875. [Google Scholar] [CrossRef]
- Philippot, C.; Bellavoine, M.; Dumont, M.; Hoummada, K.; Drillet, J.; Hebert, V.; Maugis, P. Influence of Heating Rate on Ferrite Recrystallization and Austenite Formation in Cold-Rolled Microalloyed Dual-Phase Steels. Metall. Mater. Trans. A 2017, 49, 66–77. [Google Scholar] [CrossRef]
- Castro Cerda, F.M.; Vercruysse, F.; Minh, T.N.; Kestens, L.; Monsalve, A.; Petrov, R. The Effect of Heating Rate on the Recrystallization Behavior in Cold Rolled Ultra Low Carbon Steel. Steel Res. Int. 2017, 88, 1600351. [Google Scholar] [CrossRef]
- Liu, Z.; Olivares, R.O.; Lei, Y.; Garcia, C.I.; Wang, G. Microstructural characterization and recrystallization kinetics modeling of annealing cold-rolled vanadium microalloyed HSLA steels. J. Alloys Compd. 2016, 679, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Zurob, H.S.; Brechet, Y.; Purdy, G. A model for the competition of precipitation and recrystallization in deformed austenite. Acta Mater. 2001, 49, 4183–4190. [Google Scholar] [CrossRef]
- Zhou, T.; O’malley, R.J.; Zurob, H.S. Study of Grain-Growth Kinetics in Delta-Ferrite and Austenite with Application to Thin-Slab Cast Direct-Rolling Microalloyed Steels. Metall. Mater. Trans. A 2010, 41, 2112–2120. [Google Scholar] [CrossRef]
- Zurob, H.S.; Hutchinson, C.R.; Brechet, Y.; Purdy, G. Modeling recrystallization of microalloyed austenite: Effect of coupling recovery, precipitation and recrystallization. Acta Mater. 2002, 50, 3077–3094. [Google Scholar] [CrossRef]
- Buken, H.; Kozeschnik, E. A Model for Static Recrystallization with Simultaneous Precipitation and Solute Drag. Metall. Mater. Trans. A 2016, 48, 2812–2818. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Elfimov, I.; Militzer, M. Study of the interaction of solutes with Σ5 (013) tilt grain boundaries in iron using density-functional theory. J. Appl. Phys. 2014, 115, 93506. [Google Scholar] [CrossRef]
- Perez, M.; Dumont, M.; Acevedo-Reyes, D. Implementation of classical nucleation and growth theories for precipitation. Acta Mater. 2008, 56, 2119–2132. [Google Scholar] [CrossRef]
- Dutta, B.; Palmiere, E.J.; Sellars, C.M. Modelling the kinetics of strain induced precipitation in Nb microalloyed steels. Acta Mater. 2001, 49, 785–794. [Google Scholar] [CrossRef]
- Sinclair, C.W.; Hutchinson, C.R.; Bréchet, Y. The Effect of Nb on the Recrystallization and Grain Growth of Ultra-High-Purity a-Fe: A Combinatorial Approach. Metall. Mater. Trans. A 2007, 38, 821–830. [Google Scholar] [CrossRef]
- Jin, H.; Elfimov, I.; Militzer, M. First-principles simulations of binding energies of alloying elements to the ferrite-austenite interface in iron. J. Appl. Phys. 2018, 123, 85303. [Google Scholar] [CrossRef]
- Marceaux Dit Clément, A.; Hoummada, K.; Drillet, J.; Hébert, V.; Maugis, P. Delaying Effect of Cementite on Recrystallization Kinetics of a Ti-Nb Microalloyed High-Formability Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51, 4059–4073. [Google Scholar] [CrossRef]
- Marynowski, P.; Adrian, H.; Głowacki, M. Modeling of the Kinetics of Carbonitride Precipitation Process in High-Strength Low-Alloy Steels Using Cellular Automata Method. J. Mater. Eng. Perform. 2019, 28, 4018–4025. [Google Scholar] [CrossRef]
Samples | C | Si | Mn | Ti | V |
---|---|---|---|---|---|
Ti steel | 0.071 | 0.20 | 1.20 | 0.050 | - |
Ti-V steel | 0.070 | 0.20 | 1.21 | 0.051 | 0.040 |
Symbol | Description | Unit | Value | Ref. |
---|---|---|---|---|
Nrex | Number Density of Recrystallization Nucleation Sites of Ti steel | m−3 | 8 × 1014 | 5.0 × 1014 [22] 2 × 1015 [11] |
Number Density of Recrystallization Nucleation Sites of Ti-V steel | m−3 | 9 × 1014 | 5.0 × 1014 [22] 2 × 1015 [11] | |
Erex,0 | Stored energy of Ti steel | J/m3 | 4.8 × 106 | This work |
Stored energy of Ti-V steel | J/m3 | 6.5 × 106 | This work | |
γgb | Grain Boundary Energy | J/m2 | 0.72 | 0.75 [17] |
Prefactor for Grain Boundary Mobility | m2/s | 6.9 × 10−5 | 1.5 × 10−4 [22] | |
Activation Energy for Grain Boundary Mobility | J/mol | 3.25 × 105 | 1.48 × 105 [22] 2.53 × 105 [17] | |
Eb | Ti-binding energy with grain boundary | J/mol | 1.4 × 104 | [23] |
V-binding energy with grain boundary | J/mol | 1.0 × 104 | [23] | |
D0 | Bulk diffusion coefficient of Ti | m2/s | 1.4 × 10−5 | [24] |
Bulk diffusion coefficient of V | m2/s | 2.4 × 10−5 | [25] | |
Qact | Activation energy of Ti | kJ/mol | 240 | [24] |
Activation energy of V | kJ/mol | 260 | [25] | |
δ | Grain boundary thickness | nm | 0.25 | |
Vm | Molar volume of α iron | m3/mol | 7.11 × 10−6 | |
Vp | Molar volume of TiC | m3/mol | 1.21 × 10−5 | |
Molar volume of VC | m3/mol | 1.1 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Li, X.; Li, J.; Liu, Z.; Wang, G. Role of Microalloying Elements on Recrystallization Kinetics of Cold-Rolled High Strength Low Alloy Steels. Metals 2022, 12, 1741. https://doi.org/10.3390/met12101741
Tang S, Li X, Li J, Liu Z, Wang G. Role of Microalloying Elements on Recrystallization Kinetics of Cold-Rolled High Strength Low Alloy Steels. Metals. 2022; 12(10):1741. https://doi.org/10.3390/met12101741
Chicago/Turabian StyleTang, Shuai, Xiaofang Li, Jianping Li, Zhenyu Liu, and Guodong Wang. 2022. "Role of Microalloying Elements on Recrystallization Kinetics of Cold-Rolled High Strength Low Alloy Steels" Metals 12, no. 10: 1741. https://doi.org/10.3390/met12101741
APA StyleTang, S., Li, X., Li, J., Liu, Z., & Wang, G. (2022). Role of Microalloying Elements on Recrystallization Kinetics of Cold-Rolled High Strength Low Alloy Steels. Metals, 12(10), 1741. https://doi.org/10.3390/met12101741