Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- L-PBF 316L SS has shown better resistance to hydrogen-induced damage and hydrogen embrittlement in comparison to its conventionally produced counterpart.
- Prior to charging, CR 316L SS presented polygonal-shaped grains with a large amount of deformation twins. The microstructure of L-PBF 316L was dominated by a metastable cellular sub-grain structure and separated by melt pool boundaries.
- The hydrogenation of CR 316L SS resulted in a relatively high amount of stress-induced martensite, whereas the γ → martensite transformation was suppressed in L-PBF 316L SS. This is attributed to higher austenite stability and to the cellular sub-grain structure.
- Two reversible hydrogen traps were identified for CR 316L SS. The activation energy of the first trap was estimated to be 31 ± 2 kJ/mol and it is attributed to an elastic stress field or a dislocation core. The second trap has a higher activation energy of 44 ± 4 kJ/mol and is ascribed to hydrogen trapping within the γ-austenite bulk.
- L-PBF 316L SS also presented two hydrogen traps. The first one is similar to the one of CR specimen and attributed to an elastic stress field or a dislocation core. The second has a higher activation energy of 62 ± 5 kJ/mol and is proposed to be attributed to the dislocation cell walls of the sub-grain structure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, J.R. ASM Specialty Handbook: Stainless Steels; ASM International: Materials Park, OH, USA, 1994. [Google Scholar]
- Michler, T.; San Marchi, C.; Naumann, J.; Weber, S.; Martin, M. Hydrogen environment embrittlement of stable austenitic steels. Int. J. Hydrogen Energy 2012, 37, 16231–16246. [Google Scholar] [CrossRef]
- Matsuoka, S.; Yamabe, J.; Matsunaga, H. Criteria for determining hydrogen compatibility and the mechanisms for hydrogen-assisted, surface crack growth in austenitic stainless steels. Eng. Fract. Mech. 2016, 153, 103–127. [Google Scholar] [CrossRef]
- San Marchi, C.; Somerday, B.P.; Tang, X.; Schiroky, G.H. Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels. Int. J. Hydrogen Energy 2008, 33, 889–904. [Google Scholar] [CrossRef]
- San Marchi, C.; Somerday, B.P. Technical Reference for Hydrogen Compatibility of Materials; Sandia National Laboratories: Livermore, CA, USA, 2012; SAND2012-7321. [Google Scholar]
- Perng, T.P.; Altstetter, C.J. Effects of deformation on hydrogen permeation in austenitic stainless steels. Acta Metall. 1986, 34, 1771–1781. [Google Scholar]
- Wang, Y.; Wang, X.; Gong, J.; Shen, L.; Dong, W. Hydrogen embrittlement of catholically hydrogen-precharged 304L austenitic stainless steel: Effect of plastic pre-strain. Int. J. Hydrogen Energy 2014, 39, 13909–13918. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zheng, J.; Zhao, Y.; Xu, P.; Zhou, C.; Li, X. Effect of strain-induced martensite on hydrogen embrittlement of austenitic stainless steels investigated by combined tension and hydrogen release methods. Int. J. Hydrogen Energy 2013, 38, 8208–8214. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Wang, Y.M.; Voisin, T.; McKeown, J.T.; Ye, J.; Calta, N.P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T.T.; et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018, 17, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A 2020, 772, 138633. [Google Scholar] [CrossRef]
- Gorsse, S.; Hutchinson, C.; Gouné, M.; Banerjee, R. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 2017, 18, 584–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Liu, L.; Wikman, S.; Cui, D.; Shen, Z. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J. Nucl. Mater. 2016, 470, 170–178. [Google Scholar] [CrossRef]
- Haghdadi, N.; Laleh, M.; Moyle, M.; Primig, S. Additive manufacturing of steels: A review of achievements and challenges. J. Mater. Sci. 2021, 56, 64–107. [Google Scholar] [CrossRef]
- Kong, D.; Dong, C.; Wei, S.; Ni, X.; Zhang, L.; Li, R.; Wang, L.; Man, C.; Li, X. About metastable cellular structure in additively manufactured austenitic stainless steels. Addit. Manuf. 2021, 38, 101804. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.; Tor, S.B.; Chua, C.K. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater. 2018, 10, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ding, Q.; Zhong, Y.; Zou, J.; Wu, J.; Chiu, Y.L.; Li, J.; Zhang, Z.; Yu, Q.; Shen, Z. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater. Today 2018, 21, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Voisin, T.; Forien, J.; Perron, A.; Aubry, S.; Bertin, N.; Samanta, A.; Baker, A.; Wang, Y.M. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Mater. 2021, 203, 116476. [Google Scholar] [CrossRef]
- Kong, D.C.; Dong, C.F.; Ni, X.Q. Superior resistance to hydrogen damage for selective laser melted 316L stainless steel in a proton exchange membrane fuel cell environment. Corros. Sci. 2020, 166, 108425. [Google Scholar] [CrossRef]
- Lin, J.; Chen, F.; Liu, F.; Xu, D.; Gao, J.; Tang, X. Hydrogen permeation behavior and hydrogen-induced defects in 316L stainless steels manufactured by additive manufacturing. Mater. Chem. Phys. 2020, 250, 123038. [Google Scholar] [CrossRef]
- Khaleghifar, F.; Razeghi, K.; Heidarzadeh, A.; Taherzadeh Mousavian, R. Effect of Hydrogen on the Tensile Behavior of Austenitic Stainless Steels 316L Produced by Laser-Powder Bed Fusion. Metals 2021, 11, 586. [Google Scholar] [CrossRef]
- Lee, D.; Sun, B.; Lee, S.; Ponge, D.; Jägle, E.A.; Raabe, D. Comparative study of hydrogen embrittlement resistance between additively and conventionally manufactured 304L austenitic stainless steels. Mater. Sci. Eng. A 2021, 803, 140499. [Google Scholar] [CrossRef]
- Pressouyre, G.M. Trap theory of hydrogen embrittlement. Acta Metall. 1980, 28, 895–911. [Google Scholar] [CrossRef]
- Pressouyre, G.M.; Bernstein, I.M. A kinetic trapping model for hydrogen-induced cracking. Acta Metall. 1979, 27, 89–100. [Google Scholar] [CrossRef]
- Pressouyre, G.M. A classification of hydrogen traps in steel. Metall. Trans. A 1979, 10, 1571–1573. [Google Scholar] [CrossRef]
- Silverstein, R.; Eliezer, D. Mechanisms of hydrogen trapping in austenitic, duplex, and super martensitic stainless steels. J. Alloys. Compd. 2017, 720, 451–459. [Google Scholar] [CrossRef]
- Silverstein, R.; Eliezer, D.; Boellinghaus, T. Hydrogen-trapping mechanisms of TIG-welded 316L austenitic stainless steels. J. Mater. Sci. 2018, 53, 10457–10468. [Google Scholar] [CrossRef]
- Laureys, A.; Claeys, L.; Pinson, M.; Depover, T.; Verbeken, K. Thermal desorption spectroscopy evaluation of hydrogen-induced damage and deformation-induced defects. Mater. Sci. Technol. 2020, 36, 1389–1397. [Google Scholar] [CrossRef]
- Todoshchenko, O.; Yagodzinskyy, Y.; Hänninen, H. Thermal desorption of hydrogen from AISI 316L stainless steel and pure nickel. Defect Diffus. Forum 2013, 344, 71–77. [Google Scholar] [CrossRef]
- Bach, A.C.; Martin, F.; Duhamel, C.; Perrin, S.; Jomard, F.; Crépin, J. Hydrogen trapping by irradiation-induced defects in 316l stainless steel. In The Minerals, Metals & Materials Series, Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power System–Water Reactors, Portland, OR, USA, 13–17 August 2017; Jackson, J., Paraventi, D., Wright, M., Eds.; Springer: Cham, Germany, 2019. [Google Scholar]
- ASTM A240/A240M-05; Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM E407-07; Standard Practice for Microetching Metals and Alloys. ASTM International: West Conshohocken, PA, USA, 2015.
- Lee, S.; Lee, J. The trapping and transport phenomena of hydrogen in nickel. Metall. Mater. Trans. A 1986, 17, 181–187. [Google Scholar] [CrossRef]
- Tal-Gutelmacher, E.; DEliezer, D.; Abramov, E. Thermal desorption spectroscopy (TDS)-Application in quantitative study of hydrogen evolution and trapping in crystalline and non-crystalline materials. Mater. Sci. Eng. A 2007, 445–446, 625–631. [Google Scholar] [CrossRef]
- Metalnikov, P.; Eliezer, D.; Ben-Hamu, G. Hydrogen trapping in additive manufactured Ti–6Al–4V alloy. Mater. Sci. Eng. A 2021, 811, 141050. [Google Scholar] [CrossRef]
- Rozenak, P.; Zevin, L.; Eliezer, D. Hydrogen effects on phase transformations in austenitic stainless steels. Mater. Sci. 1984, 19, 567–573. [Google Scholar] [CrossRef]
- Silverstein, R.; Eliezer, D.; Glam, B.; Eliezer, S.; Moreno, D. Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel. J. Alloys. Compd. 2015, 648, 601–608. [Google Scholar] [CrossRef]
- Silverstein, R.; Eliezer, D.; Tal-Gutelmacher, E. Hydrogen trapping in alloys studied by thermal desorption spectrometry. J. Alloy. Comp. 2018, 747, 511–522. [Google Scholar] [CrossRef]
- Yagodzinskyy, Y.; Todoshchenko, O.; Papula, S. Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy. Steel Res. Int. 2011, 82, 20–25. [Google Scholar] [CrossRef]
- Dabah, E.; Lisitsyn, V.; Eliezer, D. Performance of hydrogen trapping and phase transformation in hydrogenated duplex stainless steels. Mater. Sci. Eng. A 2010, 527, 4851–4857. [Google Scholar] [CrossRef]
- Park, Y.; Maroef, I.; Landau, A.; Olson, D. Retained austenite as a hydrogen trap in steel welds. Welding J. 2002, 81, 27–35. [Google Scholar]
- Gibala, R.; Kumnick, A.J. Hydrogen trapping in iron and steels. In Hydrogen Embrittlement and Stress Corrosion Cracking; Gibala, R., Hehermann, R.F., Eds.; ASM International: Materials Park, OH, USA, 1984; pp. 61–77. [Google Scholar]
- Castaño-Rivera, P.C.; Ramunni, V.P.; Bruzzoni, P. Hydrogen trapping in an API 5L X60 steel. Corros. Sci. 2012, 54, 106–118. [Google Scholar] [CrossRef]
- Turnbull, A.; Hutchings, R.B. Analysis of hydrogen atom transport in a two-phase alloy. Mater. Sci. Eng. A 1994, 177, 161–171. [Google Scholar] [CrossRef]
- Sun, B.; Krieger, W.; Rohwerder, M.; Ponge, D.; Raabe, D. Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels. Acta Mater. 2020, 183, 313–328. [Google Scholar] [CrossRef]
- Pressouyre, G.M.; Bernstein, I.M. A quantitative analysis of hydrogen trapping. Metall. Trans. A 1978, 9, 1571–1580. [Google Scholar] [CrossRef]
- Maroef, I.; Olson, D.L.; Eberhart, M.; Edwards, G.R. Hydrogen trapping in ferritic steel weld metal. Int. Mat. Rev. 2002, 47, 191–223. [Google Scholar] [CrossRef]
- Ningshen, S.; Uhlemann, M.; Schneider, F.; Khatak, H. Diffusion behaviour of hydrogen in nitrogen containing austenitic alloys. Corros. Sci. 2001, 43, 2255–2264. [Google Scholar] [CrossRef]
- Chun, Y.S.; Kim, J.S.; Park, K.T.; Lee, Y.K.; Lee, C.S. Role of ε martensite in tensile properties and hydrogen degradation of high-Mn steels. Mater. Sci. Eng. A 2012, 533, 87–95. [Google Scholar] [CrossRef]
- Sofinowski, K.A.; Raman, S.; Wang, X.; Gaskey, B.; Seita, M. Layer-wise engineering of grain orientation (LEGO) in laser powder bed fusion of stainless steel 316L. Addit. Manuf. 2021, 38, 101809. [Google Scholar] [CrossRef]
- Sun, S.H.; Ishimoto, T.; Hagihara, K.; Tsutsumi, Y.; Hanawa, T.; Nakano, T. Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting. Scr. Mater. 2019, 159, 89–93. [Google Scholar] [CrossRef]
- Shrinivas, V.; Varma, S.K.; Murr, L.E. Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling. Metall. Trans. A 1995, 26, 661–671. [Google Scholar] [CrossRef]
- Spencer, K.; Veron, M.; Yu-Zhang, K.; Embury, J.D. The strain induced martensite transformation in austenitic stainless steels part I—influence of temperature. Mater. Sci. Tech. 2009, 25, 7–17. [Google Scholar] [CrossRef]
- De, A.K.; Murdock, D.C.; Mataya, M.C.; Speer, J.G.; Matlock, D.K. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scr. Mater. 2004, 50, 1445–1449. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, J.L. Martensite transformation and surface cracking of hydrogen charged and outgassed type 304 stainless steel. Mater. Sci. Eng. A 2000, 288, 75–83. [Google Scholar] [CrossRef]
- Narita, N.; Altstetter, C.J.; Birnbaum, H.K. Hydrogen-related phase transformations in austenitic stainless steels. Metall. Trans. A 1982, 13, 1355–1365. [Google Scholar] [CrossRef]
- Navi, N.U.; Tenenbaum, J.; Sabatani, E.; Kimmel, G.; Ben David, R.; Rosen, B.A.; Barkay, Z.; Ezersky, V.; Tiferet, E.; Ganor, Y.I.; et al. Hydrogen effects on electrochemically charged additive manufactured by electron beam melting (EBM) and wrought Ti–6Al–4V alloys. Int. J. Hydrogen Energy 2020, 45, 25523–25540. [Google Scholar] [CrossRef]
- Louthan, M.R.; Derrick, R.G. Hydrogen transport in austenitic stainless steel. Corros. Sci. 1975, 15, 565–577. [Google Scholar] [CrossRef]
- Du, Y.; Gao, X.H.; Du, Z.W.; Lan, L.Y.; Misra, R.D.K.; Wu, H.Y.; Du, L.X. Hydrogen Diffusivity in Different Microstructural Components in Martensite Matrix with Retained Austenite. Int. J. Hydrogen Energy 2021, 46, 8269–8284. [Google Scholar] [CrossRef]
- Buckley, J.R.; Hardie, D. The effect of pre-straining and delta-ferrite on the embrittlement of 304L stainless steel by hydrogen. Corros. Sci. 1993, 34, 93–107. [Google Scholar] [CrossRef]
- Rozenak, P.; Eliezer, D. Effects of ageing after cathodic charging in austenitic stainless steels. J. Mater. Sci. 1984, 19, 3873–3879. [Google Scholar] [CrossRef]
- Rozenak, P.; Eliezer, D. Phase changes related to hydrogen-induced cracking in austenitic stainless steel. Acta Metall. 1987, 35, 2329–2340. [Google Scholar] [CrossRef]
- Silverstein, R.; Eliezer, D. Hydrogen Embrittlement of Duplex Stainless Steels, In Science and Technology of Polymers and Advanced Materials: Applied Research Methods, 1st ed.; Mukbaniani, O.V., Tatrishvili, T.N., Abadie, M.J.M., Eds.; Apple Academic Press: Waretown, NJ, USA, 2019. [Google Scholar]
- Silverstein, R.; Eliezer, D. Hydrogen trapping mechanism of different duplex stainless steels alloys. J. Alloys. Compd. 2015, 644, 280–286. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Safyari, M. Effect of work hardening mechanisms in asymmetrically cyclic loaded austenitic stainless steels on low-cycle and high-cycle fatigue behavior. Steel Res. Int. 2021, 92, 202000242. [Google Scholar] [CrossRef]
- Glage, A.; Weidner, A.; Biermann, H. Effect of austenite stability on the low cycle fatigue behavior and microstructure of high alloyed metastable austenitic cast TRIP steels. Procedia Eng. 2010, 2, 2085–2094. [Google Scholar] [CrossRef] [Green Version]
- Molnar, D.; Sun, X.; Lu, S.; Li, W.; Engberg, G.; Vitos, L. Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel. Mater. Sci. Eng. A 2019, 759, 490–497. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Louthan, M.R.; Caskey, G.R.; Donovan, J.A.; Rawl, D.E. Hydrogen embrittlement of metals. Mater. Sci. Eng. 1972, 10, 357–368. [Google Scholar] [CrossRef]
- Angel, T.J. Formation of martensite in austenitic stainless steels. J. Iron Steel Inst. 1954, 177, 165–174. [Google Scholar]
- Yonezawa, T.; Suzuki, K.; Ooki, S.; Hashimoto, A. The effect of chemical composition and heat treatment conditions on stacking fault energy for Fe-Cr-Ni austenitic stainless steel. Metall. Mater. Trans. A 2013, 44, 5884–5896. [Google Scholar] [CrossRef]
- Hong, Y.J.; Zhou, C.S.; Zheng, Y.Y.; Zhang, L.; Zheng, J.Y.; Chen, X.Y.; An, B. Formation of strain-induced martensite in selective laser melting austenitic stainless steel. Mater. Sci. Eng. A 2019, 740-741, 420–426. [Google Scholar] [CrossRef]
- Dayal, R.K.; Parvathavarthini, N. Hydrogen embrittlement in power plant steels. Sadhana 2003, 28, 431–451. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, X.; Tao, X.; Su, Y.; Qiao, L. Effect of dislocation cell walls on hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance. Corros. Sci. 2020, 166, 108428. [Google Scholar] [CrossRef]
- Sun, X.Y.; Chen, F.D.; Huang, H.; Lin, J.W.; Tang, X.B. Effects of interfaces on the helium bubble formation and radiation hardening of an austenitic stainless steel achieved by additive manufacturing. Appl. Surf. Sci. 2019, 467, 1134–1139. [Google Scholar] [CrossRef]
Fe | Cr | Ni | Mo | Mn | Si | P | S | C | N | |
---|---|---|---|---|---|---|---|---|---|---|
L-PBF | Balance | 17.6 | 12.8 | 2.30 | 1.10 | 0.65 | 0.004 | 0.004 | 0.02 | 0.045 |
CR | Balance | 16.6 | 10.3 | 2.07 | 1.11 | 0.41 | 0.036 | 0.001 | 0.023 | 0.021 |
Sample | Temperature Range (°C) | Ea (kJ/mole) |
---|---|---|
L-PBF | ~135–180 | 28 ± 4 |
~390–450 | 62 ± 5 | |
CR | ~130–170 | 31 ± 2 |
~360–430 | 44 ± 4 |
Sample | L-PBF | CR |
---|---|---|
Sγ | 27.4 | 23.6 |
Md30 (°C) | −34.8 | 16.3 |
SFE (mJ/m2) | 39.6 | 33.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metalnikov, P.; Ben-Hamu, G.; Eliezer, D. Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel. Metals 2022, 12, 1748. https://doi.org/10.3390/met12101748
Metalnikov P, Ben-Hamu G, Eliezer D. Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel. Metals. 2022; 12(10):1748. https://doi.org/10.3390/met12101748
Chicago/Turabian StyleMetalnikov, Polina, Guy Ben-Hamu, and Dan Eliezer. 2022. "Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel" Metals 12, no. 10: 1748. https://doi.org/10.3390/met12101748
APA StyleMetalnikov, P., Ben-Hamu, G., & Eliezer, D. (2022). Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel. Metals, 12(10), 1748. https://doi.org/10.3390/met12101748