Electrical Discharge Machining of Alumina Using Ni-Cr Coating and SnO Powder-Mixed Dielectric Medium
Abstract
:1. Introduction
- (1)
- Maximum achievable depth is about 5000 µm was achieved in the carbon-containing medium with carbon particles [34];
- (2)
- Most of the works were conducted in carbon-containing mediums (hydrocarbons) that can have dramatic consequences for the personnel and equipment and are not applicable on the industrial scale;
- (3)
- The material for the primary and assisting electrodes is varied from work to work (mostly copper-group materials);
- (4)
- There are no works devoted to electrical discharge machining with a wire tool electrode, meanwhile it can be prospective for the cutting tools and aerospace industry;
- (5)
- The main type of the assisting electrode deposition to the dielectric substrate (Al2O3 workpiece) is adhesion when other physical and chemical methods of deposition based on material diffusion, as an example, stayed not estimated;
- (6)
- In all the considered works related to Al2O3 ceramics, the roughness of the obtained surfaces is not provided, but visually the machined surface does not correspond to the basic requirements for the responsible surface of machinery parts: the surface contains visible macrodrops and material agglomerations, ceramics has presence adsorbed carbon-containing components of the medium, Ra is more than approximately 3.6–6.3 µm.
Auxiliary Electrode | Primary Electrode | Dielectric Medium | Technology | Worpiece Material | Machined Epth | Reference | |||
---|---|---|---|---|---|---|---|---|---|
Material | Thickness, μm | Shape | Deposition Method | ||||||
Copper | - | Sheet | - | Steel | Water-based emulsion | Electrical discahrge milling | Al2O3 | - | [30] |
- | Foil | Adhesive | - | Kerosene | Electrical discahrge machining | Al2O3 | - | [31] | |
60 µm | Foil | Adhesive | Copper, 5000 µm × 5000 µm | Kerosene | Electrical discahrge machining | Al2O3 (92% of purity) | Depth of 1500 µm | [32] | |
Silver | 20 µm | Varnish (45% of silver) applied with a paintbrush | Adhesive | WC rod with 6% of cobalt binder, ⌀115 or 500 µm * | Hydrocarbon (mineral) oil HEDMA-111 | Micro- electrical discahrge machining | 10% of Alumina Toughened Zirconia, ZrO2-Al2O3 | Depth of 731 µm × ⌀120 µm for programmed depth of 500 maµm, 43 min of processing | [33] |
Carbon | - | Polymer-based material containing carbon powder | Adhesive, heated at 150 °C | Copper pipe of ⌀3500 µm with a hole of ⌀3000 µm | Kerosene with graphite powder of ⌀30 µm average particle size, concetration of 7000–10,000 mg/L | Electrical discahrge machining | Al2O3 | Depth of ~5000 µm, ~235 min of processing | [34] |
Nomenclature of used symbols | ||
Symbol | Description | Unit |
Uo | Operational voltage | V |
f | Pulse frequency | kHz |
D | Pulse duration | µs |
Ws | Rewinding speed | m/min |
Wr | Feed rate | mm/min |
FT | Wire tension | N |
Δ | Discharge gap | µm |
dw | Wire diameter | mm |
rw | Wire radius | µm |
r’w | Wire radius taking into account spark gap Δ | mm |
w | Width of kerf | µm |
h | Depth of kerf | µm |
l | Length of kerf | mm |
A | Area of kerf in plan | mm2 |
α | Angle of cutting segment in plan | rad. |
V | Volume of removed material | mm3 |
MRR | Volumetric material removal rate | mm3·s−1 |
t | Machining time | s |
d50 | 50th percentile of the average particle diameter | µm |
δl | Longitudinal measurement error | µm |
δt | Transversal measurement error | µm |
L | Measured length | mm |
g | Product height above microscope table glass | mm |
Standard enthalpy of formation | kJ·mol−1 | |
Standard molar entropy | J·mol−1·K−1 | |
Enthalpy | kJ·mol−1 | |
Entropy | J·mol−1·K−1 | |
Gibbs energy | kJ·mol−1 | |
T | Equilibrium temperature | K |
γ | Electrical conductivity | Sm∙cm−1, Sm∙m−1 |
R | Specific resistivity | Ω∙mm2∙m−1, Ω∙m |
2. Materials and Methods
2.1. Sintering of the Samples
- -
- Corundum α-Al2O3 A16SG (Alcoa, New York, NY, USA), with an average particle diameter d50 = 0.53 µm.
2.2. Electrical Discharge Machining
- -
- tin (II) oxide SnO ChDA GOST 22516-77 (OOO “PKF Cvet”, Yekaterinburg, Sverdlovskaya obl., Russia), with an average particle diameter d50 = 164 µm.
2.3. Ceramic Workpiece Coating
2.4. Thermochemical Analyses
3. Results and Discussion
3.1. Characterization of Al2O3 and SnO Powders
3.2. Sintered Samples (SEM and Chemical Analyses)
3.3. Conductive Coating (Assisting Electrode)
3.4. Electrical Discharge Machining (Optical and Scanning Electron Microscopy)
3.5. Spark Gap and Material Removal Rate
3.6. Comparison with Literature
3.7. Thermochemistry Analyses
4. Conclusions
- (1)
- the stable electrical discharge machining with the uniform density of electric discharges was achieved for aluminum-containing ceramics with a pulse frequency of 30 kHz and pulse duration of 1.7–2.5 μs;
- (2)
- the optimum concentration of the SnO suspension for electrical discharge machining Al2O3 ceramic sample using assisting Ni-Cr coating electrode with a thickness of 10–15 µm and brass wire-tool was 150 g/L for SnO granules of ⌀10 µm;
- (3)
- thermal dissociation of the insulating material under discharge pulses was proven by the results of the chemical analysis of the eroded kerf;
- (4)
- thermal dissociation of the insulating material has proved once again that the materials under discharge impulses are subjecting sublimation—direct transition of a material from a solid to a vapor state;
- (5)
- the maximum achievable material removal rate was 0.001 mm3/s which is less than for similar works that used carbon-containing working fluid and copper-group assisting measures but excluded the formation of insulating and chemically active carbides such as Al3C4 or Al2(C2)3 that intent to interact with water at normal conditions (+20 °C), oxygen or hydrogen at elevated temperatures (650–700 °C and 2200 °C correspondingly) and can hampers erosion process, lead to the formation of extremely rough product surfaces, destruction of machine fluid filtration systems and equipment, pose a threat to personnel;
- (6)
- the recommended value of the interelectrode gap for rough electrical discharge machining was 48.0 ± 4.9 µm;
- (7)
- the developed approach is original from the previously developed ones due to the usage of non-carbon-containing working fluid, non-copper-group assisting measures, and rewinding type of the primary electrode (wire electrical discharge machining);
- (8)
- the developed approach of electrical discharge machining aluminum containing ceramics is suitable for texturing cutting ceramics, aerospace optics, exploratory research of creating a new type of materials such as optically white or transparent conductive oxide ceramics that stayed an industry demand for decades;
- (9)
- the superior role in the formation of conductive debris (intermetallic compounds) in the interelectrode gap may play the chemical composition of the primary electrode (Zn of brass wire tool electrode) in combination with the Ni-Cr coating of the alumina workpiece machined in a water medium;
- (10)
- further research is in the field of properly thermochemically adjusted components of the materials in the working zone, such as insulating workpiece—assisting electrode—assisting powder—working fluid—primary electrode; development of the approach can contribute to developing electrical discharge machining for hard and super hard insulating material to obtain more sophisticated linear surfaces and accelerate the transition to the sixth technology paradigm associated with Kondratieff’s waves.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuzin, V.; Grigoriev, S.N.; Volosova, M.A. The role of the thermal factor in the wear mechanism of ceramic tools: Part 1. Macrolevel. J. Frict. Wear 2014, 35, 505–510. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Sinopalnikov, V.A.; Tereshin, M.V.; Gurin, V.D. Control of parameters of the cutting process on the basis of diagnostics of the machine tool and workpiece. Meas. Tech. 2012, 55, 555–558. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Volosova, M.A.; Fedorov, S.V.; Okunkova, A.A.; Pivkin, P.M.; Peretyagin, P.Y.; Ershov, A. Development of DLC-Coated Solid SiAlON/TiN Ceramic End Mills for Nickel Alloy Machining: Problems and Prospects. Coatings 2021, 11, 532. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Vereschaka, A.A.; Fyodorov, S.V.; Sitnikov, N.N.; Batako, A.D. Comparative analysis of cutting properties and nature of wear of carbide cutting tools with multi-layered nano-structured and gradient coatings produced by using of various deposition methods. Int. J. Adv. Manuf. Technol. 2017, 90, 3421–3435. [Google Scholar] [CrossRef]
- Volosova, M.A.; Grigor’ev, S.N.; Kuzin, V.V. Effect of tinaium nitride coatings on stress structural inhomogeneity in ox-ide-carbide ceramic. Part 2. Concentrated force action. Refract. Ind. Ceram. 2015, 55, 487–491. [Google Scholar] [CrossRef]
- Szutkowska, M.; Cygan, S.; Podsiadlo, M.; Laszkiewicz-Lukasik, J.; Cyboron, J.; Kalinka, A. Properties of TiC and TiN Reinforced Alumina-Zirconia Composites Sintered with Spark Plasma Technique. Metals 2019, 9, 1220. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.; Pristinskiy, Y.; Volosova, M.; Fedorov, S.; Okunkova, A.; Peretyagin, P.; Smirnov, A. Wire electrical discharge machining, mechanical and tribological performance of TiN reinforced multiscale SiAlON ceramic composites fabricated by spark plasma sintering. Appl. Sci. 2021, 11, 657. [Google Scholar] [CrossRef]
- Podbolotov, K.B.; Dyatlova, E.M.; Volochko, A.T. Synthesis and reinforcement of heat-resistant cordierite-mullite ceramic structure with introduction of a fiber filler. Refract. Ind. Ceram. 2016, 57, 151–154. [Google Scholar] [CrossRef]
- Grigoriev, S.; Peretyagin, P.; Smirnov, A.; Solis, W.; Diaz, L.A.; Fernandez, A.; Torrecillas, R. Effect of graphene addition on the mechanical and electrical properties of Al2O3-SiCw ceramics. J. Eur. Ceram. Soc. 2017, 37, 2473–2479. [Google Scholar] [CrossRef]
- Grigoriev, S.; Volosova, M.; Vereschaka, A.; Sitnikov, N.; Milovich, F.; Bublikov, J.; Fyodorov, S.; Seleznev, A. Properties of (Cr,Al,Si)N-(DLC-Si) composite coatings deposited on a cutting ceramic substrate. Ceram. Int. 2020, 46, 18241–18255. [Google Scholar] [CrossRef]
- Volosova, M.; Grigoriev, S.; Metel, A.; Shein, A. The role of thin-film vacuum-plasma coatings and their influence on the efficiency of ceramic cutting inserts. Coatings 2018, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Volochko, A.T.; Podbolotov, K.B.; Dyatlova, E.M. Refractory and Infusible Ceramics (Ogneupornye I Tugoplavkie Keramicheskie Materialy), 1st ed.; Belorus. Nauka: Minsk, Belarus, 2013; pp. 79–82. [Google Scholar]
- Podbolotov, K.B.; Volochko, A.T.; Khort, N.A.; Gusarov, S.V. Refractory materials based on secondary resources and phosphate compounds. Refract. Ind. Ceram. 2019, 59, 579–582. [Google Scholar] [CrossRef]
- Ighodaro, O.L.; Okoli, O.I. Fracture toughness enhancement for alumina systems: A Review. Int. J. Appl. Ceram. Technol. 2008, 5, 313–323. [Google Scholar] [CrossRef]
- Huang, C.A.; Shen, C.H.; Li, P.Y.; Lai, P.L. Effect of fabrication parameters on grinding performances of electroplated Ni-B-diamond tools with D150-diamond particles. J. Manuf. Processes 2022, 80, 374–381. [Google Scholar] [CrossRef]
- Bishoyi, S.S.; Behera, S.K. Synthesis and structural characterization of nanocrystalline silicon by high energy mechanical milling using Al2O3 media. Adv. Powder Technol. 2022, 33, 103639. [Google Scholar] [CrossRef]
- Lazarenko, B.R.; Lazarenko, N.I. Electric spark machining of metals in water and electrolytes. (Elektroiskrovaya Obrabotka Metallov V Vode I Elektrolitakh). Surf. Eng. Appl. Electrochem. (Elektron. Obrab. Mater.) 1980, 1, 5–8. [Google Scholar]
- Lazarenko, B.R.; Mikhailov, V.V.; Gitlevich, A.E.; Verkhoturov, A.D.; Anfimov, I.S. Distribution of elements in surface layers during electric spark alloying. (Raspredelenie Elementov V Poverkhnostnykh Sloyakh Pri Elektroiskrovom Legirovanii). Surf. Eng. Appl. Electrochem. (Elektron. Obrab. Mater.) 1977, 3, 28–33. [Google Scholar]
- Lazarenko, B.R.; Duradzhi, V.N.; Bryantsev, I.V. Effect of incorporating an additional inductance on the characteristics of anode and cathode processes. (O Vliyanii Vklyucheniya Dopolnitel’noi Induktivnosti Na Kharakteristiki Anodnogo I Katodnogo Protsessov). Surf. Eng. Appl. Electrochem. (Elektron. Obrab. Mater.) 1979, 5, 8–13. [Google Scholar]
- Volosova, M.; Okunkova, A.; Peretyagin, P.; Melnik, Y.A.; Kapustina, N. On Electrical Discharge Machining of Non-Conductive Ceramics: A Review. Technologies 2019, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.N.; Kozochkin, M.P.; Porvatov, A.N.; Volosova, M.A.; Okunkova, A.A. Electrical discharge machining of ceramic nanocomposites: Sublimation phenomena and adaptive control. Heliyon 2019, 5, e02629. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.N.; Volosova, M.A.; Okunkova, A.A.; Fedorov, S.V.; Hamdy, K.; Podrabinnik, P.A.; Pivkin, P.M.; Kozochkin, M.P.; Porvatov, A.N. Electrical Discharge Machining of Oxide Nanocomposite: Nanomodification of Surface and Subsurface Layers. J. Manuf. Mater. Process. 2020, 4, 96. [Google Scholar] [CrossRef]
- Lukashenko, S.V.; Kovtun, A.V.; Dashuk, P.N.; Sokolov, B.N. The Method of Electrical Discharge Machining of Dielectrics. U.S. Patent 1,542,715, 10 December 1986. [Google Scholar]
- Mohri, N. EDM of advanced ceramics—From finish machining to machining insulating ceramics. CIRP Ann. Manuf. Technol. 1996, 45, 289–296. [Google Scholar]
- Rashid, A.; Bilal, A.; Liu, C.; Jahan, M.P.; Talamona, D.; Perveen, A. Effect of Conductive Coatings on Micro-Electro-Discharge Machinability of Aluminum Nitride Ceramic Using On-Machine-Fabricated Microelectrodes. Materials 2019, 12, 3316. [Google Scholar] [CrossRef] [Green Version]
- Popov, M.Y.; Churkin, V.D.; Kulnitskiy, B.A.; Kirichenko, A.N.; Bulatov, K.M.; Bykov, A.A.; Zinin, P.V.; Blank, V. Transformation of diamond to fullerene-type onions at pressure 70 GPa and temperature 2400 K. Nanotechnology 2020, 31, 315602. [Google Scholar] [CrossRef] [PubMed]
- Borzdov, Y.M.; Khokhryakov, A.F.; Kupriyanov, I.N.; Nechaev, D.V.; Palyanov, Y.N. Crystallization of Diamond from Melts of Europium Salts. Crystals 2020, 10, 376. [Google Scholar] [CrossRef]
- Fomin, Y.D.; Brazhkin, V.V. Comparative study of melting of graphite and graphene. Carbon 2020, 157, 767–778. [Google Scholar] [CrossRef]
- Sychev, A.E.; Busurina, M.L.; Sachkova, N.V.; Vrel, D. Interaction of Graphite with a Ti-Al Melt during Self-Propagating High-Temperature Synthesis. Inorg. Mater. 2019, 55, 780–784. [Google Scholar] [CrossRef]
- Liu, Y.H.; Li, X.P.; Ji, R.J.; Yu, L.L.; Zhang, H.F.; Li, Q.Y. Effect of technological parameter on the process performance for electric discharge milling of insulating Al2O3 ceramic. J. Mater. Process. Technol. 2008, 208, 245–250. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Lin, Y.-C.; Wang, A.-C.; Wang, D.A.; Chow, H.M. Machining characteristics of EDM for non-conductive ceramics using adherent copper foils. In Advanced Materials Research, Materials Processing Technologies, Proceedings of the International Conference on Advances in Materials and Manufacturing Processes, Shenzhen, China, 6–8 November 2010; Jiang, Z.Y., Liu, X.H., Bu, J.L., Eds.; Trans Tech Publications Ltd.: Durnten-Zurich, Switzerland, 2010. [Google Scholar] [CrossRef]
- Moudood, M.A.; Sabur, A.; Ali, M.Y.; Jaafar, I.H. Effect of Peak Current on Material Removal Rate for Electrical Discharge Machining of Non-Conductive Al2O3 Ceramic. Adv. Mater. Res. 2014, 845, 730–734. [Google Scholar] [CrossRef]
- Schubert, A.; Zeidler, H.; Kühn, R.; Hackert-Oschätzchen, M.; Flemmig, S.; Treffkorn, N. Investigation of Ablation Behaviour in Micro-EDM of Nonconductive Ceramic Composites ATZ and Si3N4-TiN. Proc. CIRP 2016, 42, 727–732. [Google Scholar] [CrossRef]
- Kucukturk, G.; Cogun, C. A New Method for Machining of Electrically Nonconductive Workpieces Using Electric Discharge Machining Technique. Mach. Sci. Technol. 2010, 14, 189–207. [Google Scholar] [CrossRef]
- Guo, Y.; Hou, P.; Shao, D.; Li, Z.; Wang, L.; Tang, L. High-Speed Wire Electrical Discharge Machining of Insulating Zirconia with a Novel Assisting Electrode. Mater. Manuf. Processes 2014, 29, 526–531. [Google Scholar] [CrossRef]
- Gattu, S.D.; Yan, J. Micro Electrical Discharge Machining of Ultrafine Particle Type Tungsten Carbide Using Dielectrics Mixed with Various Powders. Micromachines 2022, 13, 998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-X.; Chen, M.; Xi, X.-C.; Zhao, W.-S. Study on dynamically variable attitude EDM machining method of deep narrow slots. Int. J. Adv. Manuf. Technol. 2022, 121, 4601–4623. [Google Scholar] [CrossRef]
- Alam, M.N.; Siddiquee, A.N.; Khan, Z.A.; Khan, N.Z. A comprehensive review on wire EDM performance evaluation. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 236, 1724–1746. [Google Scholar] [CrossRef]
- Obrosov, A.; Gulyaev, R.; Zak, A.; Ratzke, M.; Naveed, M.; Dudzinski, W.; Weiß, S. Chemical and morphological characterization of magnetron sputtered at different bias voltages Cr-Al-C coatings. Materials 2017, 10, 156. [Google Scholar] [CrossRef] [Green Version]
- Bains, P.S.; Singh, S.; Sidhu, S.S.; Kaur, S.; Ablyaz, T.R. Investigation of surface properties of Al–SiC composites in hybrid electrical discharge machining. In Futuristic Composites, 1st ed.; Sidhu, S., Bains, P., Zitoune, R., Yazdani, M., Eds.; Springer: Singapore, 2018; pp. 181–196. [Google Scholar]
- Vozniakovskii, A.A.; Kidalov, S.V.; Kol’tsova, T.S. Development of composite material aluminum-carbon nanotubes with high hardness and controlled thermal conductivity. J. Compos. Mater. 2019, 53, 2959–2965. [Google Scholar] [CrossRef]
- Calka, A.; Wexler, D. Mechanical milling assisted by electrical discharge. Nature 2002, 419, 147–151. [Google Scholar] [CrossRef]
- Volosova, M.A.; Okunkova, A.A.; Fedorov, S.V.; Hamdy, K.; Mikhailova, M.A. Electrical Discharge Machining Non-Conductive Ceramics: Combination of Materials. Technologies 2020, 8, 32. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Volosova, M.A.; Okunkova, A.A.; Fedorov, S.V.; Hamdy, K.; Podrabinnik, P.A. Sub-Microstructure of Surface and Subsurface Layers after Electrical Discharge Machining Structural Materials in Water. Metals 2021, 11, 1040. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Hamdy, K.; Volosova, M.A.; Okunkova, A.A.; Fedorov, S.V. Electrical Discharge Machining of Oxide and Nitride Ceramics: A Review. Mater. Des. 2021, 209, 109965. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Volosova, M.A.; Okunkova, A.A.; Fedorov, S.V.; Hamdy, K.; Podrabinnik, P.A. Elemental and Thermochemical Analyses of Materials after Electrical Discharge Machining in Water: Focus on Ni and Zn. Materials 2021, 14, 3189. [Google Scholar] [CrossRef] [PubMed]
- Ikim, M.I.; Spiridonova, E.Y.; Belysheva, T.V.; Gromov, V.F.; Gerasimov, G.N.; Trakhtenberg, L.I. Structural properties of metal oxide nanocomposites: Effect of preparation method. Russ. J. Phys. Chem. B 2016, 10, 543–546. [Google Scholar] [CrossRef]
- Gorina, Y.I.; Golubkov, M.V.; Osina, T.I.; Rodin, V.V.; Sentyurina, N.N.; Chernook, S.G.; Stepanov, V.A. Two-band superconductivity of Sn1-x InxTe crystals with T-c = 3.6–3.8 K. Phys. Solid State 2017, 59, 1918–1925. [Google Scholar] [CrossRef]
- Polygalov, Y.I.; Poplavnoi, A.S.; Tupitsyn, V.E. Band structure and optical properties of zinc and cadmium diphosphide near the absorption edge. Semiconductors 1996, 30, 511–513. [Google Scholar]
- Liang, Y.; Zeng, Y.; Tang, X.; Xia, W.; Song, B.; Yao, F.; Yang, Y.; Chen, Y.; Peng, C.; Zhou, C.; et al. One-step synthesis of Cu(OH)2-Cu/Ni foam cathode for electrochemical reduction of nitrate. Chem. Eng. J. 2023, 451, 138936. [Google Scholar] [CrossRef]
- Gupta, M.K.; Mittal, R.; Chaplot, S.L.; Rols, S. Phonons, nature of bonding, and their relation to anomalous thermal expansion behavior of M2O (M = Au, Ag, Cu). J. Appl. Phys. 2014, 115, 093507. [Google Scholar] [CrossRef] [Green Version]
- Ren, R.-P.; Cheng, L.; Lv, Y.-K. Selective oxidation of vinyl chloride on Ag2O(100), Cu2O(100), and Au2O(100) surfaces: A density functional theory study. Surf. Sci. 2014, 630, 116–124. [Google Scholar] [CrossRef]
- Fuks-Janczarek, I.; Miedzinski, R.; Kassab, L.R.P.; Bordon, C.D.S. Effect of annealing time on the linear and nonlinear optical properties of PbOGeO2Ga2O3 glasses doped with Er3+ and Yb3+, Au3+ ions. Opt. Mater. 2020, 102, 109794. [Google Scholar] [CrossRef]
- Metel, A.; Bolbukov, V.; Volosova, M.; Grigoriev, S.; Melnik, Y. Source of metal atoms and fast gas molecules for coating deposition on complex shaped dielectric products. Surf. Coat. Technol. 2013, 225, 34–39. [Google Scholar] [CrossRef]
- Metel, A.; Bolbukov, V.; Volosova, M.; Grigoriev, S.; Melnik, Y. Equipment for deposition of thin metallic films bombarded by fast argon atoms. Instrum. Exp. Tech. 2014, 57, 345–351. [Google Scholar] [CrossRef]
- Kurapova, O.Y.; Smirnov, I.V.; Solovyeva, E.N.; Konakov, Y.V.; Lomakina, T.E.; Glukharev, A.G.; Konakov, V.G. The Intermetallic Compounds Formation and Mechanical Properties of Composites in the Ni-Al System. Mater. Phys. Mech. 2022, 48, 136–146. [Google Scholar]
- Ibraeva, G.M.; Sukurov, B.M.; Aubakirova, R.K.; Mansurov, Y.N. Multilayer structure formed in diffusion zone of Al-Co and Al-Ni systems. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2018, 3, 57–63. [Google Scholar]
- Grigoriev, S.N.; Teleshevskii, V.I. Measurement Problems in Technological Shaping Processes. Meas. Tech. 2011, 54, 744–749. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Gurin, V.D.; Volosova, M.A.; Cherkasova, N.Y. Development of residual cutting tool life prediction algorithm by processing on CNC machine tool. Mater. Werkst. 2013, 44, 790–796. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Kozochkin, M.P.; Sabirov, F.S.; Kutin, A.A. Diagnostic systems as basis for technological improvement. Proc. CIRP 2012, 1, 599–604. [Google Scholar] [CrossRef]
- Vereschaka, A.S.; Grigoriev, S.N.; Sotova, E.S.; Vereschaka, A.A. Improving the efficiency of the cutting tools made of mixed ceramics by applying modifying nano-scale multilayered coatings. Adv. Mat. Res. 2013, 712–715, 391–394. [Google Scholar]
- Vereschaka, A.A.; Grigoriev, S.N.; Volosova, M.A.; Batako, A.; Vereschaka, A.S.; Sitnikov, N.N.; Seleznev, A.E. Nano-scale multi-layered coatings for improved efficiency of ceramic cutting tools. Int. J. Adv. Manuf. Technol. 2017, 90, 27–43. [Google Scholar] [CrossRef]
- Grigoriev, S.; Volosova, M.; Fyodorov, S.; Lyakhovetskiy, M.; Seleznev, A. DLC-coating application to improve the durability of ceramic tools. J. Mater. Eng. Perform. 2019, 28, 4415–4426. [Google Scholar] [CrossRef]
- Viswanathan, V.; Laha, T.; Balani, K.; Agarwal, A.; Seal, S. Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng. R 2006, 54, 121–285. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Jiang, W. Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2013, 39, 103–112. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, L.J.; Jiang, W.; Chen, L.-D. Microstructure and properties of Al2O3-TiC composites fabricated by combination of high-energy ball milling and spark plasma sintering (SPS). J. Inorg. Mater. 2005, 20, 1445. [Google Scholar]
- Fukuzawa, Y.; Tani, T.; Mohri, N. Machining characteristics of insulated Si3N4 ceramics by electrical discharge method—Use of powder-mixed machining fluid. J. Ceram. Soc. Jpn. 2000, 108, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, L.; Wang, N.; Teng, Y.L. Machining of 7Cr13Mo steel by US-PMEDM process. Mater. Manuf. Processes 2021, 9, 1060–1066. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, A.; Dixit, A.R.; Das, A.K. Performance evaluation of Al2O3 nano powder mixed dielectric for electric discharge machining of Inconel 825. Mater. Manuf. Process. 2018, 33, 986–995. [Google Scholar] [CrossRef]
- Tzeng, Y.F.; Lee, C.Y. Effects of powder characteristics on electrodischarge machining efficiency. Int. J. Adv. Manuf. Technol. 2001, 17, 586–592. [Google Scholar] [CrossRef]
- Melnik, Y.A.; Kozochkin, M.P.; Porvatov, A.N.; Okunkova, A.A. On adaptive control for electrical discharge machining using vibroacoustic emission. Technologies 2018, 6, 96. [Google Scholar] [CrossRef] [Green Version]
- Vikhareva, N.A.; Krylov, V.S.; Simonova, G.V. Problems of methodological support in the verification of instrument current transformers. J. Phys. Conf. Ser. 2021, 1889, 042070. [Google Scholar] [CrossRef]
- Vikhareva, N.A.; Krylov, V.S.; Simonova, G.V. Analysis of the Metrological Characteristics of Current Transformers Based on the Results of Periodic Verification. IOP Conf. Ser. Earth Environ. Sci. 2022, 1070, 012023. [Google Scholar] [CrossRef]
- Ivanov, S.N.; Lisenkov, V.V.; Shklyaev, V.A. Investigation of discharge formation and generation of runaway electrons beam in dense gases (Book Chapter). In Runaway Electrons Preionized Diffuse Discharges; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 330–354. [Google Scholar]
- Zakharov, O.V.; Brzhozovskii, B.M. Accuracy of centering during measurement by roundness gauges. Meas. Tech. 2006, 49, 1094–1097. [Google Scholar] [CrossRef]
- Rezchikov, A.F.; Kochetkov, A.V.; Zakharov, O.V. Mathematical models for estimating the degree of influence of major factors on performance and accuracy of coordinate measuring machines. MATEC Web Conf. 2017, 129, 01054. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.N.; Volosova, M.A.; Okunkova, A.A.; Fedorov, S.V.; Hamdy, K.; Podrabinnik, P.A.; Pivkin, P.M.; Kozochkin, M.P.; Porvatov, A.N. Wire Tool Electrode Behavior and Wear under Discharge Pulses. Technologies 2020, 8, 49. [Google Scholar] [CrossRef]
- Zakharov, O.V.; Balaev, A.F.; Kochetkov, A.V. Modeling Optimal Path of Touch Sensor of Coordinate Measuring Machine Based on Traveling Salesman Problem Solution. Procedia Eng. 2017, 206, 1458–1463. [Google Scholar] [CrossRef]
- Yusupov, Z.A. Study of Temperatures and Residual Stresses for Face Plunge-Cut Grinding of Heat-Resistant Alloys. Russ. Aeronaut. 2021, 64, 116–121. [Google Scholar] [CrossRef]
- Syreyshchikova, N.V.; Pimenov, D.Y.; Gupta, M.K.; Nadolny, K.; Giasin, K.; Aamir, M.; Sharma, S. Relationship between Pressure and Output Parameters in Belt Grinding of Steels and Nickel Alloy. Materials 2021, 14, 4704. [Google Scholar] [CrossRef]
- Kubaschewski, O. Experimental Thermochemistry Of Alloys. Thermochim. Acta 1988, 129, 11–27. [Google Scholar] [CrossRef]
- Brzezińska, M.; García-Muñoz, P.; Ruppert, A.M.; Keller, N. Photoactive ZnO Materials for Solar Light-Induced CuxO-ZnO Catalyst Preparation. Materials 2018, 11, 2260. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Zhang, X.; Hwang, J.; Park, J. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors. Materials 2016, 9, 851. [Google Scholar] [CrossRef]
- Zhikhareva, I.G.; Zhikharev, A.I. Modeling Of Electrodeposited Precipitation Structure. Izv. Vyss. Uchebnykh Zaved. Khimiya I Khimicheskaya Tekhnologiya 1993, 36, 52–58. [Google Scholar]
- Kuz’min, M.P.; Kuz’mina, M.Y.; Fedorov, S.N. Determination of the thermodynamic stability of intermetallic compounds in technical aluminum. Mater. Sci. Forum 2022, 1052, 86–91. [Google Scholar] [CrossRef]
- Padalko, A.G.; Ellert, O.G.; Efimov, N.N.; Novotortsev, V.M.; Talanova, G.V.; Zubarev, G.I.; Fedotov, V.T.; Suchkov, A.N.; Solntsev, K.A. High-pressure phase transformations, microstructure, and magnetic properties of the hypereutectic alloy 10Ni-90Al. Inorg. Mater. 2013, 49, 1098–1105. [Google Scholar] [CrossRef]
- Belov, N.A. Structure and strengthening of casting alloys of aluminium-nickel-zirconium system. Metalloved. I Termicheskaya Obrab. Met. 1993, 10, 19–22. [Google Scholar]
- Chemical Encyclopedia (Khimicheskaya Enciklopediya), 1st ed.; Knunyants, I.L. (Ed.) Great Russian Encyclopedia (Bolshaya Rossiyskaya Enciklopediya): Moscow, Russia, 1992. [Google Scholar]
- Zhelezny, V.; Khliyeva, O.; Motovoy, I.; Lukianov, N. An experimental investigation and modelling of the thermal and caloric properties of nanofluids isopropyl alcohol—Al2O3 nanoparticles. Thermochim. Acta 2019, 678, 178296. [Google Scholar] [CrossRef]
- Turchanin, A.A.; Tomilin, I.A.; Zubkov, A.A.; Inoue, A. Experimental determination of the formation enthalpies of zirconium-nickel-alminium amorphous alloys. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 1997, 226, 487–490. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Shaysultanov, D.G.; Chernichenko, R.S.; Tikhonovsky, M.A.; Zherebtsov, S.V. Effect of Al on structure and mechanical properties of Fe-Mn-Cr-Ni-Al non-equiatomic high entropy alloys with high Fe content. J. Alloys Compd. 2019, 770, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Stepanov, N.D.; Shaysultanov, D.G.; Tikhonovsky, M.A.; Zherebtsov, S.V. Structure and high temperature mechanical properties of novel non-equiatomic Fe-(Co, Mn)-Cr-Ni-Al-(Ti) high entropy alloys. Intermetallics 2018, 102, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Chen, L.; Liu, D.; Liu, J.; An, L. Ultra-low temperature reactive flash sintering synthesis of high-enthalpy and high-entropy Ca0.2Co0.2Ni0.2Cu0.2Zn0.2O oxide ceramics. Mater. Lett. 2021, 304, 130679. [Google Scholar] [CrossRef]
- Olalekan, O.A.; Campbell, A.J.; Adewuyi, A.; Jye Lau, W.; Adeyemi, O.G. Synthesis and application of ZnO-MgO-NiO@Stearicamide mixed oxide for removal of ciprofloxacin and ampicillin from aqueous solution. Results Chem. 2022, 4, 100457. [Google Scholar] [CrossRef]
- Zhikhareva, I.G. Calculation of Energy Characteristics of Nuclei under Electrocrystallization of Metals. Zhurnal Fiz. Khimii 1992, 66, 2232–2235. [Google Scholar]
- Metel, A.S.; Stebulyanin, M.M.; Fedorov, S.V.; Okunkova, A.A. Power Density Distribution for Laser Additive Manufacturing (SLM): Potential, Fundamentals and Advanced Applications. Technologies 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.N.; Kozochkin, M.P.; Kropotkina, E.Y.; Okunkova, A.A. Study of wire tool-electrode behavior during electrical discharge machining by vibroacoustic monitoring. Mech. Ind. 2016, 17, 717. [Google Scholar] [CrossRef]
Density ρ, g/sm3 | Melting Point Tm, K | Coefficient of Linear Thermal Expansion α × 106, K−1 (at 20–1000 °C) | Thermal Conductivity λ, W·(m·K)−1 (at 20–1000 °C) | Spectral Transmission Range, µm | Permittivity, F/m |
---|---|---|---|---|---|
3.8–4.0 | 2345 | 7.0–8.0 | 22–25 | 0.17–5.5 | 9.5–10.0 |
Specification | Value and Description |
---|---|
Max axis motions along the axes X × Y × Z, mm | 125 × 200 × 80 |
Accuracy of positioning along the axes, µm | ±1 |
Achievable roughness parameter Ra, µm | 0.6 |
Dielectric medium | Any |
Max power consumption, kW | <6 |
Factor | Value |
---|---|
Operational voltage, Uo | 108 V |
Pulse frequency, f | 10, 15, 20, 25, 30 kHz |
Pulse duration, D | 1, 1.5, 1.7, 2, 2.35, 2.7 µs |
Rewinding speed, Ws | 3.4 m/min |
Feed rate, Wr | 0.1 mm/min |
Wire tension, FT | 0.25 N |
Substance | Standard Enthalpy of Formation , kJ·mol−1 | Standard Molar Entropy , J mol−1 K−1 |
---|---|---|
Al (c) | 0 | 28.31 |
Al2O3 (c) [89] | −1675.0 | 50.94 |
AlNi (c) [90,91] | −118.407 | 11.47 |
H2 (g) | 0 | 130.52 |
H2O (l) | −285.84 | 69.96 |
Ni (c) | 0 | 29.86 |
NiO (c) [92,93] | −239.7 | 37.99 |
O2 (g) | 0 | 205.03 |
Zn (c) | 0 | 41.63 |
ZnO (c) [94] | −350.8 | 43.5 |
Inner Diameter Range, µm | Volume, % | Cumulative Volume, % |
---|---|---|
1.00–10.00 | 8.17 | 8.17 |
10.00–16.00 | 14.57 | 22.74 |
16.00–20.00 | 7.50 | 30.24 |
20.00–25.00 | 8.62 | 38.87 |
25.00–32.00 | 12.09 | 50.95 |
32.00–38.00 | 9.25 | 60.20 |
38.00–45.00 | 9.55 | 69.75 |
45.00–53.00 | 8.86 | 78.61 |
53.00–63.00 | 8.45 | 87.05 |
63.00–75.00 | 6.47 | 93.52 |
75.00–90.00 | 3.55 | 97.07 |
90.00–106.00 | 1.93 | 99.00 |
106.00–125.00 | 1.00 | 100.00 |
Inner Diameter Range, µm | Volume, % | Cumulative Volume, % |
---|---|---|
1.00–10.00 | 6.81 | 6.81 |
10.00–16.00 | 9.13 | 15.94 |
16.00–20.00 | 5.85 | 21.79 |
20.00–25.00 | 6.57 | 28.35 |
25.00–32.00 | 8.18 | 36.54 |
32.00–38.00 | 5.72 | 42.25 |
38.00–45.00 | 5.79 | 48.04 |
45.00–53.00 | 7.34 | 55.38 |
53.00–63.00 | 7.36 | 62.74 |
63.00–75.00 | 6.81 | 69.55 |
75.00–90.00 | 6.69 | 76.24 |
90.00–106.00 | 3.09 | 79.33 |
106.00–125.00 | 3.01 | 82.35 |
125.00–150.00 | 3.12 | 85.47 |
150.00–180.00 | 1.70 | 87.17 |
250.00–300.00 | 12.84 | 100.00 |
Chemical Elements | Atomic Ratio, at. % | Weight Ratio, wt. % |
---|---|---|
Al | 37.41 | 50.2 |
O | 62.59 | 49.8 |
Material | Electrical Conductivity γ, Sm∙cm−1 | Electrical Conductivity 2 γ, Sm∙m−1 | Specific Resistivity 2 R, Ω∙mm2∙m−1 | Specific Resistivity 2 R, Ω∙m |
---|---|---|---|---|
Chrome-nickel alloy KhN77TYuR | 0.008019 ± 0.00001 1 | 0.8019 × 106 | 1.247 | 1.247 × 10−6 |
Al2O3 | 0.0000001 ± 0.0000005 3 | 0.00000474 × 106 | 210 985.2 | 2.11 × 10−1 |
Spectrum Number | Chemical Elements, wt. % | ||||
---|---|---|---|---|---|
Al | O | Ni | Cr | Sn | |
1 | 37.53 | 48.7 | 4.89 | 2.65 | 1.61 |
2 | 36.57 | 48.14 | 5.3 | 2.57 | 1.67 |
3 | 39.89 | 48.77 | 4.93 | 2.11 | - |
Number | Pulse Frequency f, kHz | Pulse Duration D, µs | Kerf Width w, µm | Kerf Depth h, µm | Kerf Length l, µm | Spark Gap Δ, µm |
---|---|---|---|---|---|---|
1 | 10 | 1 | 310.74 ± 3.01 | 68.99 ± 3.00 | 2000 ± 3.06 | 84.44 ± 4.88 |
2 | 10 | 2.35 | 318.76 ± 3.01 | 66.32 ± 3.00 | 3600 ± 3.12 | 99.67 ± 4.88 |
3 | 20 | 2.5 | 269.02 ± 3.00 | 67.99 ± 3.00 | 2000 ± 3.06 | 42.05 ± 4.88 |
4 | 25 | 2.5 | 257.79 ± 3.00 | 95.20 ± 3.00 | 3000 ± 3.10 | 9.86 ± 4.88 |
5 | 30 | 2.5 | 320.37 ± 3.01 | 49.74 ± 3.00 | 4000 ± 3.13 | 157.80 ± 4.88 |
6 | 10 | 2.7 | 254.05 ± 3.00 | 50.81 ± 3.00 | 2000 ± 3.06 | 59.19 ± 4.88 |
Number | Kerf Area in the Plan A, mm2 | Volume of Removed Material V, mm3 | Estimated Machining Time t, s | Volumetric Material Removal Rate, mm3/s |
---|---|---|---|---|
1 | 0.0148 ± 0.0000921 | 0.03 | 41.39 | 0.0005 |
2 | 0.0146 ± 0.0000939 | 0.05 | 39.79 | 0.0010 |
3 | 0.0128 ± 0.0000918 | 0.03 | 40.79 | 0.0005 |
4 | 0.0180 ± 0.0000930 | 0.05 | 57.10 | 0.0006 |
5 | 0.0108 ± 0.0000942 | 0.04 | 29.84 | 0.0010 |
6 | 0.0089 ± 0.0000918 | 0.02 | 30.48 | 0.0004 |
Primary Tool | Assisting Tool | Assisting Powder | Working Medium | Volumetric Material Removal Rate, mm3/s | Reference |
---|---|---|---|---|---|
Brass wire, ⌀0.25 mm | Ni-Cr PVD coating, 12 µm | SnO particles, ⌀10 µm, 150 g/L | Deionized water | 0.0014 | Current study |
Copper prism, 5 × 5 mm | Copper foil, 6 µm | - | Mineral oil (hydrocarbons) | 0.0051 | [32] |
Copper tube, ⌀3.5 mm (inner—⌀3.0) | Resin-based carbon tape | Graphite particles, ⌀30 µm, 7–10 g/L | Kerosene (hydrocarbons) | 0.0213 | [34] |
Chemical Reaction | Chemical Composition of Debris | Amount of Substance n, mol | Enthalpy of Substances , kJ·mol−1 | Enthalpy of Reaction , kJ |
---|---|---|---|---|
(12) | NiO | |||
(14) | Ni5Zn21 | |||
(15) | AlNi |
Chemical Reaction | Chemical Composition of Debris | Entropy of Substances , J·mol−1 | Entropy of Reaction , J | Gibbs Energy of Reaction , kJ·mol−1 | Equilibrium Temperature of Reaction T, K |
---|---|---|---|---|---|
(12) | NiO | ||||
(14) | Ni5Zn21 | ||||
(15) | AlNi |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okunkova, A.A.; Volosova, M.A.; Kropotkina, E.Y.; Hamdy, K.; Grigoriev, S.N. Electrical Discharge Machining of Alumina Using Ni-Cr Coating and SnO Powder-Mixed Dielectric Medium. Metals 2022, 12, 1749. https://doi.org/10.3390/met12101749
Okunkova AA, Volosova MA, Kropotkina EY, Hamdy K, Grigoriev SN. Electrical Discharge Machining of Alumina Using Ni-Cr Coating and SnO Powder-Mixed Dielectric Medium. Metals. 2022; 12(10):1749. https://doi.org/10.3390/met12101749
Chicago/Turabian StyleOkunkova, Anna A., Marina A. Volosova, Elena Y. Kropotkina, Khaled Hamdy, and Sergey N. Grigoriev. 2022. "Electrical Discharge Machining of Alumina Using Ni-Cr Coating and SnO Powder-Mixed Dielectric Medium" Metals 12, no. 10: 1749. https://doi.org/10.3390/met12101749
APA StyleOkunkova, A. A., Volosova, M. A., Kropotkina, E. Y., Hamdy, K., & Grigoriev, S. N. (2022). Electrical Discharge Machining of Alumina Using Ni-Cr Coating and SnO Powder-Mixed Dielectric Medium. Metals, 12(10), 1749. https://doi.org/10.3390/met12101749