On the Prediction of Material Fracture for Thin-Walled Cast Alloys Using GISSMO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Material
2.2. Experimental Methodology
2.3. Experimental Results
3. Characterization of Plasticity and Fracture Behaviors with GISSMO
3.1. Shell-Based Model
3.2. Tetrahedral-Based Models
4. Discussion
5. Conclusions
- With the well-calibrated parameters, GISSMO could reproduce the test results with good agreement for the multiple stress states.
- Optimization with LS-OPT was a feasible way to calibrate the parameters for GISSMO and avoid the requirement of practical skills.
- The part structures tests and simulations should be conducted in future work to evaluate whether the tetrahedral-based model with GISSMO is suitable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corona, E.; Reedlunn, B. A Review of Macroscopic Ductile Failure Criteria; Sandia National Laboratories: Livermore, CA, USA, 2013. [Google Scholar]
- McClintock, F.A. A Criterion for Ductile Fracture by the Growth of Holes. J. Appl. Mech. 1968, 35, 363–371. [Google Scholar] [CrossRef]
- Rice, J.R.; Tracey, D.M. On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 1969, 17, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Gurson, A.L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Bao, Y.; Wierzbicki, T. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 2004, 46, 81–98. [Google Scholar] [CrossRef]
- Mae, H.; Teng, X.; Bai, Y.; Wierzbicki, T. Calibration of ductile fracture properties of a cast aluminum alloy. Mater. Sci. Eng. A 2007, 459, 156–166. [Google Scholar] [CrossRef]
- Bai, Y.; Wierzbicki, T. A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 2008, 24, 1071–1096. [Google Scholar] [CrossRef]
- Luo, M.; Dunand, M.; Mohr, D. Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading—Part II: Ductile fracture. Int. J. Plast. 2012, 32–33, 36–58. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.-J.; Park, H.; Bong, H.J.; Kim, D. Metal plasticity and ductile fracture modeling for cast aluminum alloy parts. J. Mater. Process. Technol. 2018, 255, 584–595. [Google Scholar] [CrossRef]
- Pack, K.; Mohr, D. Combined necking & fracture model to predict ductile failure with shell finite elements. Eng. Fract. Mech. 2017, 182, 32–51. [Google Scholar]
- Pack, K.; Roth, C.C. The second Sandia Fracture Challenge: Blind prediction of dynamic shear localization and full fracture characterization. Int. J. Fract. 2016, 198, 197–220. [Google Scholar] [CrossRef] [Green Version]
- Mohr, D.; Marcadet, S.J. Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities. Int. J. Solids Struct. 2015, 67–68, 40–55. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Steglich, D.; Lee, M.-G. Fracture prediction based on a two-surface plasticity law for the anisotropic magnesium alloys AZ31 and ZE10. Int. J. Plast. 2018, 105, 1–23. [Google Scholar] [CrossRef]
- Walters, C.L. Framework for adjusting for both stress triaxiality and mesh size effect for failure of metals in shell structures. Int. J. Crashworthiness 2014, 19, 1–12. [Google Scholar] [CrossRef]
- Hoque, S.E.; Scheiblhofer, S.; Ucsnik, S. A comparative study of the hexahedral elements in LS-DYNA for crashworthiness simulation. In Proceedings of the 12th European LS-DYNA Conference, Koblenz, Germany, 14–16 May 2019. [Google Scholar]
- Kim, D.-Y.; Han, Y.; Shin, S.; Yook, H. Numerical Fracture Analysis Considering Forming Effect and Element Size Regularization for Automotive Seat Structures. SAE Int. J. Engines 2017, 10, 287–295. [Google Scholar] [CrossRef]
- Eriksson, V. Numerical Simulation of Ductile Cast Iron Fracture: A parameterization of the material model *MAT_224 in the FE-code LS-DYNA. Master’s Thesis, Karlstad University, Karlstad, Sweden, 2013. [Google Scholar]
- Leost, Y.; Sonntag, A.; Haase, T. Modeling of a Cast Aluminum Wheel for Crash Application. In Proceedings of the 11th European LS-DYNA Conference, Salzburg, Austria, 9–11 May 2017. [Google Scholar]
- Sung, J.H.; Kim, J.H.; Wagoner, R.H. A plastic constitutive equation incorporating strain, strain-rate, and temperature. Int. J. Plast. 2010, 26, 1746–1771. [Google Scholar] [CrossRef]
- Johnsen, J.; Holmen, J.K.; Gruben, G.; Morin, D.; Langseth, M. Calibration and Application of GISSMO and* MAT_258 for Simulations Using Large Shell Elements. In Proceedings of the 16th International LS-DYNA User Conference, Online, 10–11 June 2020. [Google Scholar]
- Chen, X.; Chen, G.; Huang, L. Validation of GISSMO model for fracture prediction of a third-generation advanced high-strength steel. SAE Int. J. Mater. Manuf. 2018, 11, 293–302. [Google Scholar] [CrossRef]
- Gu, B.; Lim, J.; Hong, S. Determination and Verification of GISSMO Fracture Properties of Bolts Used in Radioactive Waste Transport Containers. Materials 2022, 15, 1893. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.-l.; Li, X.-X.; Lang, L.-H.; Ruan, S.-W. Optimized design of tube hydroforming loading path using multi-objective differential evolution. Int. J. Adv. Manuf. Technol. 2017, 88, 837–846. [Google Scholar] [CrossRef]
- Andrade, F.; Feucht, M.; Haufe, A. On the Prediction of Material Failure in LS-DYNA®: A Comparison between GISSMO and DIEM. In Proceedings of the 13th International LS-DYNA Users Conference, Detroit, MI, USA, 8 June 2014. [Google Scholar]
Test # | Specimen | Desired | Desired |
---|---|---|---|
a | Tensile | 0.33 | 1 |
b | R5 notched | 0.5 | 0.35 |
c | Center hole | 0.38 | 0.85 |
d | R20 notched | 0.40 | 0.80 |
e | Tensile–shear | 0.10 | 0.25 |
f | Shear | 0.0 | 0.0 |
# | ||||||||
---|---|---|---|---|---|---|---|---|
MAT 1 | 383.143 | 0.09532 | 2.20 × 10−5 | 267.504 | 94.2477 | 40.0521 | 0.68908 | 0.5 |
MAT 2 | 319.5 | 0.15532 | 1.2 × 10−5 | 267.504 | 186.023 | 6.12133 | 0.41562 | 0.5 |
MAT 3 | 488.515 | 0.22313 | 1.9 × 10−5 | 306.092 | 221.370 | 11.5027 | 0.68509 | 0.39 |
ELFORM 4 | ELFORM 10 | ELFORM 13 | ELFORM 16 |
---|---|---|---|
149 s | 43 s | 49 s | 205 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Y.; Dong, L.; Song, H.; Gao, L.; Xiao, R. On the Prediction of Material Fracture for Thin-Walled Cast Alloys Using GISSMO. Metals 2022, 12, 1850. https://doi.org/10.3390/met12111850
Ge Y, Dong L, Song H, Gao L, Xiao R. On the Prediction of Material Fracture for Thin-Walled Cast Alloys Using GISSMO. Metals. 2022; 12(11):1850. https://doi.org/10.3390/met12111850
Chicago/Turabian StyleGe, Yulong, Liping Dong, Huibin Song, Lechen Gao, and Rui Xiao. 2022. "On the Prediction of Material Fracture for Thin-Walled Cast Alloys Using GISSMO" Metals 12, no. 11: 1850. https://doi.org/10.3390/met12111850
APA StyleGe, Y., Dong, L., Song, H., Gao, L., & Xiao, R. (2022). On the Prediction of Material Fracture for Thin-Walled Cast Alloys Using GISSMO. Metals, 12(11), 1850. https://doi.org/10.3390/met12111850