Influence of Si Content on the Microstructure and Tensile Properties of Weathering Bridge Steel Produced via Thermal Mechanical Control Process
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
3.1. Tensile Properties
3.2. Microstructure
4. Discussion
4.1. Effect of Si Content on the Mixed Microstructures
4.2. Effect of Si Content on the Tensile Properties
5. Conclusions
- A QF+GBF+M/A microstructure was formed in each Si-containing steel. With an increase in Si content from 0.15–0.77 wt.%, the MED of QF+GBF matrix increased from 3.4–4.8 μm due to a decrease in the super-cooling degree and an increase in the QF content.
- The fraction and average size of the M/A constituent increased from 4.2–6.3 μm and 0.8–1.5 μm, respectively, with an increase in the Si content because of the sufficient diffusion of carbon at a high transformation temperature.
- Although the contributions of grain boundary strengthening, dislocation strengthening, and precipitation strengthening decreased from 220–179, 149–126, and 21–19 MPa, respectively, with an increase in Si content from 0.15–0.77 wt.%, the sum of the contributions of solid solution strengthening, lattice strengthening, and M/A strengthening increased significantly from 41–175 MPa, leading to an increase in the final yield strength from 431–499 MPa.
- The increased Si content changed the strengthening contribution. Grain boundary strengthening was the main strengthening mechanism at the Si content of 0.15–0.36 wt.%, whereas the roles of solid solution strengthening and M/A constituent strengthening gradually became prominent at the Si content of 0.48–0.77 wt.%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Acronyms | Full Names |
---|---|
TMCP | thermal mechanical control process |
QF | quasi-polygonal ferrite |
GBF | granular bainitic ferrite |
M/A | martensite/austenite |
MED | mean equivalent diameter |
OM | optical microscope |
EBSD | electron back-scattered diffraction |
TEM | transmission electron microscope |
MED | mean equivalent diameter |
MTA | misorientation tolerance angle |
EDX | energy dispersive X-ray |
YS | yield strength |
TS | tensile strength |
YR | yield strength/tensile strength |
LAGB | low-angle grain boundary |
HAGB | high-angle grain boundary |
∆σ | train hardening magnitude |
References
- Chen, J.; Shuai, T.; Liu, Z.; Wang, G. Influence of Molybdenum Content on Transformation Behavior of High Performance Bridge Steel during Continuous Cooling. Mater. Des. 2013, 49, 465–470. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, G.; Sun, R.; Guo, K.; Wang, Q. Effect of Si Content on the Microstructures and the Impact Properties in the Coarse-Grained Heat-Affected Zone (CGHAZ) of Typical Weathering Steel. Mater. Sci. Eng. A 2019, 762, 138082. [Google Scholar] [CrossRef]
- Gomez, J.A.M.; Antonissen, J.; Palacio, C.A.; Grave, E.D. Effects of Si as Alloying Element on Corrosion Resistance of Weathering Steel. Corros. Sci. 2012, 59, 198–203. [Google Scholar] [CrossRef]
- Liu, S.K.; Zhang, J. The Influence of the Si and Mn Concentrations on the Kinetics of the Bainite Transformation in Fe-C-Si-Mn Alloys. Metall. Trans. A 1990, 21, 1517–1525. [Google Scholar] [CrossRef]
- El-Shenawy, E.; Reda, R. Optimization of TMCP Strategy for Microstructure Refinement and Flow-Productivity Characteristics Enhancement of Low Carbon Steel-ScienceDirect. J. Mater. Res. Technol. 2019, 8, 2819–2831. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, F.; Yanmei, L.I.; Wang, G. Effect of TMCP Parameters on the Microstructure and Properties of an Nb-Ti Microalloyed Steel. ISIJ Int. 2005, 45, 851–857. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Tang, S.; Liu, Z.-Y.; Wang, G.-D. Microstructural Characteristics with Various Cooling Paths and the Mechanism of Embrittlement and Toughening in Low-Carbon High Performance Bridge Steel. Mater. Sci. Eng. A 2013, 559, 241–249. [Google Scholar] [CrossRef]
- Sibley, K.D.; Breyer, N.N. The Effect of Silicon on the Impact and Tensile Properties of Low-Carbon Steels. Metall. Trans. A 1976, 7, 1602–1604. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; Edmonds, D.V. Analysis of Mechanical Properties and Microstructure of High-Silicon Dual-Phase Steel. Met. Sci. 1980, 14, 41–49. [Google Scholar] [CrossRef]
- Cao, R.; Chan, Z.S.; Yuan, J.J.; Han, C. The Effects of Silicon and Copper on Microstructures, Tensile and Charpy Properties of Weld Metals by Refined X120 Wire. Mater. Sci. Eng. A. Struct. Mater. Prop. Misrostructure Process. 2018, 718, 350–362. [Google Scholar] [CrossRef]
- Chen, H.C.; Era, H.; Shimizu, M. Shimizu Effect of Phosphorus on the Formation of Retained Austenite and Mechanical Properties in Si-Containing Low-Carbon Steel Sheet. Metall. Trans. A 1989, 20, 437–445. [Google Scholar] [CrossRef]
- Cai, M.; Ding, H.; Zhang, J.; Li, L.; Li, X.; Du, L. Transformation Behavior of Low Carbon Steels Containing Two Different Si Contents. J. Iron Steel Res. Int. 2009, 16, 55–60. [Google Scholar] [CrossRef]
- Lin, S.; Borgenstam, A.; Stark, A.; Hedström, P. Effect of Si on Bainitic Transformation Kinetics in Steels Explained by Carbon Partitioning, Carbide Formation, Dislocation Densities, and Thermodynamic Conditions. Mater. Charact. 2022, 185, 111774. [Google Scholar] [CrossRef]
- Bonnevie, E.; Ferriere, G.; Ikhlef, A.; Kaplan, D.; Orain, J. Morphological Aspects of Martensite–Austenite Constituents in Intercritical and Coarse Grain Heat Affected Zones of Structural Steels. Mater. Sci. Eng. A 2004, 385, 352–358. [Google Scholar] [CrossRef]
- Min, C.J.; Lee, S.G.; Sohn, S.S.; Kim, K.S.; Kim, W.K.; Chang, S.L.; Lee, S. Effects of Coiling Temperature and Pipe-Forming Strain on Yield Strength Variation after ERW Pipe Forming of API X70 and X80 Linepipe Steels. Mater. Sci. Eng. A 2017, 682, 304–311. [Google Scholar] [CrossRef]
- Taboada, M.C.; Iza-Mendia, A.; Gutiérrez, I.; Jorge-Badiola, D. Substructure Development and Damage Initiation in a Carbide-Free Bainitic Steel upon Tensile Test. Metals 2019, 9, 1261. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Zhou, D.; Wang, T.; Li, S.; Wang, Q. Tensile Properties of an Acicular Ferrite and Martensite/Austenite Constituent Steel with Varying Cooling Rates. Mater. Sci. Eng. A 2014, 590, 224–231. [Google Scholar] [CrossRef]
- Calcagnotto, M.; Ponge, D.; Demir, E.; Raabe, D. Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-Phase Steels Studied by 2D and 3D EBSD. Mater. Sci. Eng. A 2010, 527, 2738–2746. [Google Scholar] [CrossRef]
- Marcisz, J.; Garbarz, B.; Janik, A.; Zalecki, W. Controlling the Content and Morphology of Phase Constituents in Nanobainitic Steel Containing 0.6%C to Obtain the Required Ratio of Strength to Plasticity. Metals 2021, 11, 658. [Google Scholar] [CrossRef]
- Guo, B.; Fan, L.; Qian, W.; Fu, Z.; Zhang, F. The Role of the Bainitic Packet in Control of Impact Toughness in a Simulated CGHAZ of X90 Pipeline Steel. Met. -Open Access Metall. J. 2016, 6, 256. [Google Scholar] [CrossRef]
- Freudenberger, J.; Göllner, J.; Heilmaier, M.; Mook, G.; Saage, H.; Srivastava, V.; Wendt, U. Materials Science and Engineering. In Springer Handbook of Mechanical Engineering; Grote, K.-H., Antonsson, E.K., Eds.; Springer Handbooks; Springer: Berlin, Heidelberg, 2009; pp. 73–222. ISBN 978-3-540-30738-9. [Google Scholar]
- Kamran, S.; Farid, A. Subgrain-Controlled Grain Growth in the Laser-Melted 316 L Promoting Strength at High Temperatures. R. Soc. Open Sci. 2018, 5, 172394. [Google Scholar] [CrossRef] [Green Version]
- Dutta, B.; Palmiere, E.J.; Sellars, C.M. Modelling the Kinetics of Strain Induced Precipitation in Nb Microalloyed Steels. Acta Mater. 2001, 49, 785–794. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; Edmonds, D.V. The Bainite Transformation in a Silicon Steel. Metall. Trans. A 1979, 10, 895–907. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Di, X.; Wang, D. Effect of Cu Content on Microstructure and Mechanical Properties for High-Strength Deposited Metals Strengthened by Nano-Precipitation. Metals 2022, 12, 1360. [Google Scholar] [CrossRef]
- Laidler, K.J. The Development of the Arrhenius Equation. J. Chem. Educ. 1984, 61, 494. [Google Scholar] [CrossRef]
- Taillard, R.; Verrier, P.; Maurickx, T.; Foct, J. Effect of Silicon on CGHAZ Toughness and Microstructure of Microalloyed Steels. Met. Mater Trans A 1995, 26, 447–457. [Google Scholar] [CrossRef]
- Shi, G.; Luo, B.; Zhang, S.; Wang, Q.; Zhao, H. Microstructural Evolution and Mechanical Properties of a Low-Carbon V–N–Ti Steel Processed with Varied Isothermal Temperatures. Mater. Sci. Eng. A 2021, 801, 140396. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Q.; Shi, G.; Yang, X.; Qiao, M.; Wu, J.; Zhang, F. In-Depth Understanding of the Relationship between Dislocation Substructure and Tensile Properties in a Low-Carbon Microalloyed Steel. Mater. Sci. Eng. A 2022, 854, 143681. [Google Scholar] [CrossRef]
- Iza-Mendia, A.; Gutierrez, I. Generalization of the Existing Relations between Microstructure and Yield Stress from Ferrite–Pearlite to High Strength Steels. Mater. Sci. Eng. A 2013, 561, 40–51. [Google Scholar] [CrossRef]
- Hansen, N.; Huang, X.; Winther, G. Grain Orientation, Deformation Microstructure and Flow Stress. Mater. Sci. Eng. A 2008, 494, 61–67. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, K.; Chen, H.; Xiao, X.; Wang, Q.; Zhang, F. Qingfeng Effect of Increased N Content on Microstructure and Tensile Properties of Low-C V-Microalloyed Steels. Mater. Sci. Eng. A 2016, 651, 951–960. [Google Scholar] [CrossRef]
- Hughes, D.A. Microstructure Evolution, Slip Patterns and Flow Stress. Mater. Sci. Eng. A 2001, 319, 46–54. [Google Scholar] [CrossRef]
- Xiao, X.; Shi, G.; Zhang, S.; Wang, Q. Effect of Cooling Path on Microstructure Features and Tensile Properties in a Low Carbon Mo-V-Ti-N Steel. Metals 2018, 8, 677. [Google Scholar] [CrossRef] [Green Version]
- Lei, F.; Wang, T.; Fu, Z.; Zhang, S.; Wang, Q. Effect of Heat-Treatment on-Line Process Temperature on the Microstructure and Tensile Properties of a Low Carbon Nb-Microalloyed Steel. Mater. Sci. Eng. A 2014, 607, 559–568. [Google Scholar] [CrossRef]
- Rosenberg, J.M.; Piehler, H.R. Calculation of the Taylor Factor and Lattice Rotations for Bcc Metals Deforming by Pencil Glide. Metall. Mater. Trans. B 1971, 2, 257–259. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, Q.; Liu, H.; Wang, T.; Wang, Q.; Zhang, F. Effect of Controlled Cooling on Microstructure and Tensile Properties of Low C Nb-Ti-Containing HSLA Steel for Construction. Metals 2017, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Hüper, T.; Endo, S.; Ishikawa, N.; Osawa, K. Effect of Volume Fraction of Constituent Phases on the Stress-Strain Relationship of Dual Phase Steels. Isij Int. 2007, 39, 288–294. [Google Scholar] [CrossRef]
- Zare, A.; Ekrami, A. Influence of Martensite Volume Fraction on Tensile Properties of Triple Phase Ferrite-Bainite-Martensite Steels. Mater. Sci. Eng. A 2011, 530, 440–445. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Gan, K.; Dong, J.; Liu, C. Acquiring a Low Yield Ratio Well Synchronized with Enhanced Strength of HSLA Pipeline Steels through Adjusting Multiple-Phase Microstructures. Mater. Sci. Eng. A 2020, 785, 139350. [Google Scholar] [CrossRef]
Steel | C | Si | Mn | P | S | Ni | Cr | Mo | Cu | Nb | Ti |
---|---|---|---|---|---|---|---|---|---|---|---|
15Si | 0.061 | 0.15 | 1.05 | 0.0080 | 0.0022 | 0.37 | 0.20 | 0.30 | 0.30 | 0.02 | 0.012 |
36Si | 0.06 | 0.36 | 1.08 | 0.0084 | 0.0025 | 0.37 | 0.22 | 0.32 | 0.30 | 0.02 | 0.012 |
48Si | 0.058 | 0.48 | 1.04 | 0.0094 | 0.0025 | 0.34 | 0.23 | 0.31 | 0.32 | 0.02 | 0.012 |
77Si | 0.06 | 0.77 | 1.06 | 0.0077 | 0.0018 | 0.37 | 0.21 | 0.30 | 0.31 | 0.021 | 0.015 |
Steel | YS/MPa | TS/MPa | ∆σ/MPa | YR |
---|---|---|---|---|
15Si | 431 | 607 | 176 | 0.710 |
36Si | 452 | 653 | 201 | 0.692 |
48Si | 471 | 685 | 221 | 0.681 |
77Si | 499 | 738 | 239 | 0.676 |
Steel | fM/A/% | DM/A/μm | MED2°≤θ≤15°/μm | fp/% | Dp/nm | ρ/×1014m−2 |
---|---|---|---|---|---|---|
15Si | 4.2 | 0.8 | 3.4 | 2.9 ± 0.3 × 10−4 | 40.2 ± 0.4 | 3.3 |
36Si | 4.8 | 1.2 | 3.9 | 2.8 ± 0.2 × 10−4 | 39.9 ± 0.3 | 3.1 |
48Si | 5.5 | 1.3 | 4.3 | 2.5 ± 0.3 × 10−4 | 39.3 ± 0.3 | 2.8 |
77Si | 6.3 | 1.5 | 4.8 | 2.3 ± 0.2 × 10−4 | 38.9 ± 0.2 | 2.3 |
Steels | YS/MPa | (σss + σ0 + σM/A)/MPa | σgb/MPa | σρ/MPa | σp/MPa |
---|---|---|---|---|---|
15Si | 431 | 41 | 220 | 149 | 21 |
36Si | 452 | 79 | 206 | 146 | 21 |
48Si | 471 | 126 | 186 | 139 | 20 |
77Si | 499 | 175 | 179 | 126 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Shi, G.; Qi, J.; Zhao, L.; Liu, Y.; Wang, Q.; Wang, G. Influence of Si Content on the Microstructure and Tensile Properties of Weathering Bridge Steel Produced via Thermal Mechanical Control Process. Metals 2022, 12, 1901. https://doi.org/10.3390/met12111901
Chen Z, Shi G, Qi J, Zhao L, Liu Y, Wang Q, Wang G. Influence of Si Content on the Microstructure and Tensile Properties of Weathering Bridge Steel Produced via Thermal Mechanical Control Process. Metals. 2022; 12(11):1901. https://doi.org/10.3390/met12111901
Chicago/Turabian StyleChen, Zhenye, Genhao Shi, Jianjun Qi, Liyang Zhao, Yanli Liu, Qingfeng Wang, and Guodong Wang. 2022. "Influence of Si Content on the Microstructure and Tensile Properties of Weathering Bridge Steel Produced via Thermal Mechanical Control Process" Metals 12, no. 11: 1901. https://doi.org/10.3390/met12111901
APA StyleChen, Z., Shi, G., Qi, J., Zhao, L., Liu, Y., Wang, Q., & Wang, G. (2022). Influence of Si Content on the Microstructure and Tensile Properties of Weathering Bridge Steel Produced via Thermal Mechanical Control Process. Metals, 12(11), 1901. https://doi.org/10.3390/met12111901