Research on Optimization Design of Cast Process for TiAl Case Casting
Abstract
:1. Introduction
2. Experimental Method
3. Results and Analysis
3.1. Selection of Centrifugal Pouring and Gravity Pouring Process
3.2. Defect on Upper Edge of Case
3.3. Defects at the Runner of Thick and Large Flange
3.4. Stress-Induced Cracks in the Thick-Thin Transition Site
4. Discussion
5. Conclusions
- (1)
- Compared with centrifugal casting, gravity casting has the advantages of melt-filling stability and filling synchronization. With appropriate process parameters, complete filling and metallurgical quality control of TiAl alloy case castings can be realized.
- (2)
- By increasing the number of bottom cross runners to increase the metal liquid filling channel, the melt flow distance is shortened. The mold-filling capacity of TiAl alloy melt to the upper edge of the case is improved, and the misrun risk at the upper edge of the case is reduced.
- (3)
- The thick and large flange part of the TiAl alloy case is prone to porosity defects and surface fluorescence defects due to overheating of the runner. It is necessary to optimize the runner structure to reduce the adverse effects of the overheating zone of the runner.
- (4)
- Stress concentration readily occurs in the thick-thin transition part of TiAl alloy case castings during the casting process. In serious instances, the castings are cracked and discarded. Therefore, various technical measures should be taken to reduce stress concentration and avoid cracks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamaguchi, M.; Inui, H.; Ito, K. High-temperature structural Intermetallics. Acta Mater. 2000, 48, 307–322. [Google Scholar] [CrossRef]
- Kothari, K.; Radhakrishnan, R.; Norman, M. Advances in gamma titanium aluminides and their manufacturing techniques. Prog. Aerosp. Sci. 2012, 55, 1–16. [Google Scholar] [CrossRef]
- Perrut, M.; Caron, P.; Thomas, M.; Couret, A. High temperature materials for aerospace applications: Ni-based superalloys andγ-TiAl alloys. Comptes Rendus Phys. 2018, 19, 657–671. [Google Scholar] [CrossRef]
- Li, J.; Whittaker, M. Intermetallics: Applications. Encycl. Mater. Met. Alloys 2022, 1, 339–349. [Google Scholar]
- Xu, R.; Li, M.; Zhao, Y. A Review of Microstructure Control and Mechanical Performance Optimization of γ-TiAl Alloys. J. Alloys Compd. 2022, 932, 167611. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, Z. Research and Development of TiAl Inermetallic based alloy. Mater. China 2010, 29, 9–13. [Google Scholar]
- McQuay, P.A. Cast Gamma TiAl Alloys: Are We There Yet. In Structural Intermetallics 2001; Hemker, K.J., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., Whittenberger, J.D., Eds.; TMS (The Minerals, Metals & Materials Society): Pittsburgh, PA, USA, 2001; pp. 83–90. [Google Scholar]
- Kelly, T.J.; Juhas, M.C.; Huang, S.C. Effect of a B2/gamma structure on the tensile properties of the cast gamma titanium aluminide Ti-48Al-2Cr-2Nb. Scr. Metall. Mater. 1993, 29, 1409–1414. [Google Scholar] [CrossRef]
- Schafrik, R.E. A Perspective on Intermetallic Commercialization for Aero-Turbine Applications; The Minerals, Metals & Materials Society: Moran, WY, USA, 2001. [Google Scholar]
- Loria, E.A. Gamma titanium aluminides as prospective structural materials. Intermetallics 2000, 8, 1339–1345. [Google Scholar] [CrossRef]
- Bartolotta, P.A.; Krause, D.L. Titanium Aluminide Applications in the High Speed Civil Transport. In International Symposium on Gamma Titanium Aluminides; The Minerals, Metals and Materials Society: San Diego, CA, USA, 1999; p. 209071. [Google Scholar]
- Zhu, C.; Li, S.; Zhang, J. Microstructure design for the reliability of turbocharger blade of cast TiAl based alloy. J. Mater. Eng. 2017, 45, 36–42. [Google Scholar]
- Zhu, C.; Li, S.; Zhang, J.; He, H.; Liu, Y. Evaluation of endurance for turbocharger wheel of TiAl based alloy. Rare Met. Mater. Eng. 2020, 49, 980–984. [Google Scholar]
- Zhu, C.; Li, S.; Zhang, J.; He, H.; Zhu, X. Research Progress of Titanium Aluminide Turbocharger wheel. J. Netshape Form. Eng. 2022, 14, 1–9. [Google Scholar]
- Hu, H.; Zuo, J.; Huang, D.; Ding, X.; Nan, H. Effect of Pouring System on TiAl Alloy Blade Forming by Centrifugal Casting. Foundary 2021, 70, 1054–1059. [Google Scholar]
- Ye, X.; Su, Y.; Guo, J.; Zhang, Y.; Fu, H. Numerical Simulation on Suction Casting Defects of TiAl Based Alloy Blade. Rare Met. Mater. Eng. 2011, 40, 247–250. [Google Scholar]
- Yang, L.; Yao, Q.; Zhang, L.; Lin, J. Numerical Simulation of High Nb-TiAl Low Pressure Turbine Blades Centrifugal Casting Based on Procast. Cast. Technol. 2014, 35, 2945–2947. [Google Scholar]
- Chu, Y.; Chang, H.; Huang, D.; Nan, H.; Zhong, H.; Zhao, Y.; Li, J. Numerical Simulation of Centrifugal Casting Process of ZTC4 Ti Alloy Case. Spec. Cast. Nonferrous Alloy. 2012, 32, 133–136. [Google Scholar]
- Qi, X.; Zhang, Y.; Gu, H.; Li, B.; Liu, Y.; Xu, Q. Numerical Simulation and Process Optimization of Thermally Controlled Solidification of K4169 Superalloy Engine Case. Foundry 2015, 64, 851–855. [Google Scholar]
- Arenas, M.F. Weldability of a Cast Gamma Titanium Aluminide Alloy Using Gas Tungsten Arc Welding; The University of Alabama: Tuscaloosa, AL, USA, 2001. [Google Scholar]
- Tlotleng, M.; Skhosane, S.; Pityana, S. Mechanical properties of a laser deposited spherical Ti4822 alloy. In 11th International Symposium on High-Temperature Metallurgical Processing 2020; Peng, Z., Hwang, J., Downey, J., Zhao, B., Yucel, O., Keskinkilic, E., Jiang, T., White, F., Mahmoud, M., Eds.; TMS (The Minerals, Metals & Materials Society): San Diego, CA, USA; Springer: Berlin/Heidelberg, Germany, 2020; pp. 123–131. [Google Scholar]
- Donchev, A.; Mengis, L.; Couret, A.; Mayer, S.; Clemens, H.; Galetz, M. Effects of tungsten alloying and fluorination on the oxidation behavior of intermetallic titanium aluminides for aerospace applications. Intermetallics 2021, 139, 107270. [Google Scholar] [CrossRef]
- Li, Z.; Yan, H.; Li, X.; Meng, X.; Liu, R.; Jia, Q.; Wu, L.; Cao, F. The long-term isothermal oxidation and cyclic oxidation performance of anodized Ti48Al2Nb2Cr alloy. Corros. Sci. 2022, 199, 110200. [Google Scholar] [CrossRef]
- Sung, S.Y.; Kim, Y.J. Modeling of titanium aluminides turbo-charger casting. Intermetallics 2007, 15, 468–474. [Google Scholar] [CrossRef]
- Chao, X.; Ma, Y.; Bo, C.; Liu, K.; Li, Y. Modeling of filling and solidification process for TiAl exhaust valves during suction casting. Acta Metall. Sin. 2013, 26, 33–48. [Google Scholar]
- Pan, L.; Gao, Y.; Gao, W.; Hu, Z.; Zheng, L.; Zhang, H. Prediction of Shrinkage Porosity (Hole) in TiAl Based Alloy Blade and Its Processing Optimization Based on the ProCAST. Spec. Cast. Nonferrous Alloy. 2010, 4, 504–507. [Google Scholar]
- Liang, Z.; Xu, Q.; Li, J.; Li, S.; Zhang, J.; Liu, B.; Zhong, Z. Research on numerical simulation of Investment casting for gamma Titanium aluninde turbocharger. Rare Met. Mater. Eng. 2003, 3, 164–169. [Google Scholar]
- Noda, T. Application of cast gamma TiAl for automobiles. Intermetallics 1998, 6, 709–713. [Google Scholar] [CrossRef]
- Tetsui, T. Development of a TiAl turbocharger for passenger vehicles. Mater. Sci. Eng. 2002, A329–A331, 582–588. [Google Scholar] [CrossRef]
- Sung, S.; Kim, Y. Alpha-case formation mechanism on titanium investment castings. Mater. Sci. Eng. 2005, 405, 173–177. [Google Scholar] [CrossRef]
- Yu, G.; Li, N.; Li, Y.; Wang, Y. The effects of different types of investments on the alpha-case layer of titanium castings. J. Prosthet. Dentistry 2007, 97, 157–164. [Google Scholar]
Material | Density (kg·m−3) | Thermal Conductivity (W·m−1·K−1) | Specific Heat (KJ·Kg−1·K−1) | Latent Heat (J·Kg−1·K−1) | Range of Solidification Temperature (K) | Viscosity Coefficient (Pa·s·10−3) | Interfacial Heat Transfer Coefficient (W·m−2·K−1) |
---|---|---|---|---|---|---|---|
TiAl | 3900 | 15 [24] | 0.61 [24] | 400 [24] | 1762.5~1781.1 | 4.2~5.4 [25] | —— |
Y2O3 shell mold | 4200 | 2.1~2.4 [26] | 0.70~1.00 [26] | —— | —— | —— | 1500 [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Zhu, C.; Lin, B.; Wang, Z. Research on Optimization Design of Cast Process for TiAl Case Casting. Metals 2022, 12, 1954. https://doi.org/10.3390/met12111954
Zhu X, Zhu C, Lin B, Wang Z. Research on Optimization Design of Cast Process for TiAl Case Casting. Metals. 2022; 12(11):1954. https://doi.org/10.3390/met12111954
Chicago/Turabian StyleZhu, Xiaoping, Chunlei Zhu, Baosen Lin, and Zidong Wang. 2022. "Research on Optimization Design of Cast Process for TiAl Case Casting" Metals 12, no. 11: 1954. https://doi.org/10.3390/met12111954
APA StyleZhu, X., Zhu, C., Lin, B., & Wang, Z. (2022). Research on Optimization Design of Cast Process for TiAl Case Casting. Metals, 12(11), 1954. https://doi.org/10.3390/met12111954