Effect of Immersion Time in Chloride Solution on the Properties of Structural Rebar Embedded in Alkali-Activated Slag Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Concrete Specimen
2.2. Microstructural Characterization
2.3. Immersion Test
2.4. Electrochemical Test
2.5. Durability Properties
2.6. Chloride Migration
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Electrochemical Impedance Spectroscopy
3.3. Resistance to Chloride Ion Penetration
3.4. Volume of Permeable Pores
3.5. Chloride Ion Migration
3.6. X-ray Diffraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, N.; Stephan, D. Reactivation of a Retarded Suspension of Ground Granulated Blast-Furnace Slag. Materials 2016, 9, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujahid-Amran, H.S.; Abdelgader, A.M.; Onaizi, R.F.; Today-Ozbakkaloglu, R.S.M.; Rashid, G. 3D-printable alkali-activated concretes for building applications: A critical review. Constr. Build. Mater. 2022, 319, 126126. [Google Scholar] [CrossRef]
- Mengasini, L.; Mavroulidou, M.; Gunn, M.J. Alkali-activated concrete mixes with ground granulated blast furnace slag and paper sludge ash in seawater environments. Sustain. Chem. Pharm. 2021, 20, 100380. [Google Scholar] [CrossRef]
- Criado, M.; Aperador, W.; Sobrados, I. Microstructural and Mechanical Properties of Alkali Activated Colombian Raw Materials. Materials 2016, 9, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Z.; Zhao, X.; Du, Y.; Yang, S.; Wang, D.; Zhao, T.; Bai, Y. Comprehensive properties of passive film formed in simulated pore solution of alkali-activated concrete. Constr. Build. Mater. 2022, 319, 126142. [Google Scholar] [CrossRef]
- Tahri, W.; Hu, X.; Shi, C.; Zhang, Z. Review on corrosion of steel reinforcement in alkali-activated concretes in chloride-containing environments. Constr. Build. Mater. 2021, 293, 123484. [Google Scholar] [CrossRef]
- Ibrahim, M.; Abiodun, B.; Algaifi, H.; Rahman, M.; Nasir, M.; Ewebajo, A. Assessment of acid resistance of natural pozzolan-based alkali-activated concrete: Experimental and optimization modelling. Constr. Build. Mater. 2021, 304, 124657. [Google Scholar] [CrossRef]
- Fořt, J.; Mildner, M.; Koppert, M.; Černý, R. Waste solidified alkalis as activators of aluminosilicate precursors: Functional and environmental evaluation. J. Build. Eng. 2022, 54, 104598. [Google Scholar] [CrossRef]
- Kumar-Das, S.; Adediran, A.; Rodrigue-Kaze, C.; Mohammed-Mustakim, S.; Leklou, N. Production, characteristics, and utilization of rice husk ash in alkali-activated materials: An overview of fresh and hardened state properties. Constr. Build. Mater. 2022, 345, 128341. [Google Scholar] [CrossRef]
- Amran, M.; Al-Fakih, A.; Chu, S.H.; Fediuk, R.; Haruna, S.; Azevedo, A.; Vatin, N. Long-term durability properties of geopolymer concrete: An in-depth review. Case Stud. Constr. Mater. 2021, 15, e00661. [Google Scholar] [CrossRef]
- Ibrahim, M.; Maslehuddin, M. An overview of factors influencing the properties of alkali-activated binders. J. Clean. Prod. 2021, 286, 124972. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Abdelgader, H.; Murali, G.; Yong, Y. Fiber-reinforced alkali-activated concrete: A review. J. Build. Eng. 2022, 45, 103638. [Google Scholar] [CrossRef]
- Kathirvel, P.; Mohan-Kaliyaperumal, S.R. Influence of recycled concrete aggregates on the flexural properties of reinforced alkali-activated slag concrete. Constr. Build. Mater. 2016, 102, 51–58. [Google Scholar] [CrossRef]
- Aperador, W.; Mejía de Gutiérrez, R.; Bastidas, D.M. Steel corrosion behaviour in carbonated alkali-activated slag concrete. Corros. Sci. 2009, 51, 2027–2033. [Google Scholar] [CrossRef] [Green Version]
- Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002, 40, 70–76. [Google Scholar] [CrossRef]
- ASTM C642-21(2022); Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C1202-22(2022); Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2022.
- NT BUILD 492 (1999); Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-steady-state Migration Experiments. NORDTEST: Finland, Norway, 1999.
- Zic, M.; Pereverzyev, S. Optimizing noisy CNLS problems by using Nelder-Mead algorithm: A new method to compute simplex step efficiency. J. Electroanal. Chem. 2019, 851, 113439. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, H. Corrosion inhibition and adsorption behavior of (3-aminopropyl)-triethoxysilane on steel surface in the simulated concrete pore solution contaminated with chloride. J. Mol. Liq. 2022, 363, 119896. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, C.; Liu, X.; Liu, A.; Li, T.; Ding, R.; Shah, S.P.; Li, W. Application of layered double hydroxides (LDHs) in corrosion resistance of reinforced concrete-state of the art. Constr. Build. Mater. 2021, 307, 124991. [Google Scholar] [CrossRef]
- Biondi, L.; Perry, M.; McAlorum, J.; Vlachakis, C.; Hamilton, A. Geopolymer-based moisture sensors for reinforced concrete health monitoring. Sens. Actuators B Chem. 2020, 309, 127775. [Google Scholar] [CrossRef]
- Rodrigues, R.; Gaboreau, S.; Gance, J.; Ignatiadis, I.; Betelu, S. Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Constr. Build. Mater. 2021, 269, 121240. [Google Scholar] [CrossRef]
- Criado, M.; Sobrados, I.; Bastidas, J.M.; Sanz, J. Corrosion behaviour of coated steel rebars in carbonated and chloride-contaminated alkali-activated fly ash mortar. Prog. Org. Coat. 2016, 99, 11–22. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, H.; Wang, F. [BMIM]BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution. Electrochim. Acta 2011, 56, 4268–4275. [Google Scholar] [CrossRef]
- Huyen-Vu, T.; Chi-Dang, L.; Kang, G.; Sirivivatnanon, V. Chloride induced corrosion of steel reinforcement in alkali-activated slag concretes: A critical review. Case Stud. Constr. Mater. 2022, 16, e01112. [Google Scholar] [CrossRef]
- Kaur, H.; Singla, S. Non-Destructive testing to detect multiple cracks in reinforced concrete beam using electromechanical impedance technique. Mater. Today Proc. 2022; in press. [Google Scholar]
- Liu, P.; Wang, W.; Chen, Y.; Feng, X.; Miao, L. Concrete damage diagnosis using electromechanical impedance technique. Constr. Build. Mater. 2017, 136, 450–455. [Google Scholar] [CrossRef]
- Talakokula, V.; Bhalla, S.; Gupta, A. Monitoring early hydration of reinforced concrete structures using structural parameters identified by piezo sensors via electromechanical impedance technique. Mech Syst. Signal Process 2018, 99, 129–141. [Google Scholar] [CrossRef]
- Da Silva, G.F.; Martini, S.; Moraes, J.C.B.; Teles, L.K. AC impedance spectroscopy (AC-IS) analysis to characterize the effect of nanomaterials in cement-based mortars. Constr. Build. Mater. 2021, 269, 121260. [Google Scholar] [CrossRef]
- Bai, R.; Zhang, J.; Yan, C.; Liu, S.; Wang, X.; Yang, Z. Calcium hydroxide content and hydration degree of cement in cementitious composites containing calcium silicate slag. Chemosphere 2021, 280, 130918. [Google Scholar] [CrossRef]
- Ibrahim, M.; Kalimur-Rahman, M.; Megat-Johari, M.A.; Nasir, M.; Adeoluwa-Oladapo, E. Chloride diffusion and chloride-induced corrosion of steel embedded in natural pozzolan-based alkali-activated concrete. Constr. Build. Mater. 2020, 262, 120669. [Google Scholar] [CrossRef]
- Aguirre-Guerrero, A.M.; Mejía de Gutiérrez, R. Alkali-activated protective coatings for reinforced concrete exposed to chlorides. Constr. Build. Mater. 2021, 268, 121098. [Google Scholar] [CrossRef]
- Thomas, R.J.; Ariyachandra, E.; Lezama, D.; Peethamparan, S. Comparison of chloride permeability methods for Alkali-Activated concrete. Constr. Build. Mater. 2018, 165, 104–111. [Google Scholar] [CrossRef]
- Mehta, A.; Siddique, R.; Ozbakkaloglu, T.; Ahmed-Shaikh, F.U.; Belarbi, R. Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Constr. Build. Mater. 2020, 257, 119548. [Google Scholar] [CrossRef]
- Zhang, J.X.; Ma, Y.; Zheng, J.; Hu, J.; Fu, J.; Zhang, Z.; Wang, H. Chloride diffusion in alkali-activated fly ash/slag concretes: Role of slag content, water/binder ratio, alkali content and sand-aggregate ratio. Constr. Build. Mater. 2020, 261, 119940. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, J.; Ye, G. The pore structure and permeability of alkali-activated fly ash. Fuel 2013, 104, 771–780. [Google Scholar] [CrossRef]
- Hu, X.; Shi, C.; Shi, Z.; Zhang, L. Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cem. Concr. Compos. 2019, 104, 103392. [Google Scholar] [CrossRef]
- Gao, X.; Yao, X.; Wang, C.; Geng, C.; Yang, T. Properties and microstructure of eco-friendly alkali-activated slag cements under hydrothermal conditions relevant to well cementing applications. Constr. Build. Mater. 2022, 318, 125973. [Google Scholar] [CrossRef]
- Runci, A.; Serdar, M. Effect of curing time on the chloride diffusion of alkali-activated slag. Case Stud. Constr. Mater. 2022, 16, e00927. [Google Scholar] [CrossRef]
- Sun, X.; Liu, J.; Qiu, J.; Wu, P.; Zhao, Y. Alkali activation of blast furnace slag using a carbonate-calcium carbide residue alkaline mixture to prepare cemented paste backfill. Constr. Build. Mater. 2022, 320, 126234. [Google Scholar] [CrossRef]
- Moussadik, A.; Saadi, M.; Diouri, A. Chemical, mineralogical and thermal characterization of a composite alkali-activated binder based on coal gangue and fly ash. Mater. Today Proc. 2022, 58, 1452–1458. [Google Scholar] [CrossRef]
- Jae-Kim, M.; Ik-Hwang, W.; Jung-Cho, W. The influence of alkali activators on the properties of ternary blended cement incorporated with ferronickel slag. Constr. Build. Mater. 2022, 318, 126174. [Google Scholar] [CrossRef]
Vitreous Material | Phases of Silica, Q4(0Al) | |||||
---|---|---|---|---|---|---|
Slag | Position (ppm) | −57.1 | −71.1 | −80.3 | −90.8 | −106.5 |
Width | 10.49 | 10.49 | 10.49 | 10.49 | 10.49 | |
Integral (%) | 9.11 | 23.13 | 36.50 | 21.05 | 10.22 |
Time Years | RS Ω cm2 | R1 kΩ cm2 | YP1 μF/cm2 s1−α1 | α1 | YP2 μF/cm2 s1−α2 | α2 | R2 kΩ cm2 |
---|---|---|---|---|---|---|---|
0 | 7.27 | 0.82 | 385 | 0.8421 | 12 | 0.8214 | 1.425 |
1.5 | 8.31 | 1.357 | 563 | 0.8448 | 45 | 0.7953 | 3.602 |
3 | 12.21 | 2.158 | 474 | 0.8718 | 58 | 0.6399 | 20.316 |
4.5 | 25.14 | 2.479 | 465 | 0.8932 | 69 | 0.7563 | 56.521 |
6 | 28.65 | 8.869 | 1274 | 0.8510 | 235 | 0.6954 | 189.350 |
7.5 | 39.21 | 3.953 | 622 | 0.8714 | 157 | 0.7369 | 63.872 |
9 | 48.97 | 5.77 | 653 | 0.8845 | 155 | 0.7152 | 69.233 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aperador, W.; Bautista-Ruiz, J.; Sánchez-Molina, J. Effect of Immersion Time in Chloride Solution on the Properties of Structural Rebar Embedded in Alkali-Activated Slag Concrete. Metals 2022, 12, 1952. https://doi.org/10.3390/met12111952
Aperador W, Bautista-Ruiz J, Sánchez-Molina J. Effect of Immersion Time in Chloride Solution on the Properties of Structural Rebar Embedded in Alkali-Activated Slag Concrete. Metals. 2022; 12(11):1952. https://doi.org/10.3390/met12111952
Chicago/Turabian StyleAperador, Willian, Jorge Bautista-Ruiz, and Jorge Sánchez-Molina. 2022. "Effect of Immersion Time in Chloride Solution on the Properties of Structural Rebar Embedded in Alkali-Activated Slag Concrete" Metals 12, no. 11: 1952. https://doi.org/10.3390/met12111952
APA StyleAperador, W., Bautista-Ruiz, J., & Sánchez-Molina, J. (2022). Effect of Immersion Time in Chloride Solution on the Properties of Structural Rebar Embedded in Alkali-Activated Slag Concrete. Metals, 12(11), 1952. https://doi.org/10.3390/met12111952