Structure and Properties of Al-Co-Cr-Fe-Ni High-Entropy Alloy Subjected to Electron–Ion Plasma Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Properties of Cast HEA in the Initial State
3.2. Structure and Properties of HEA Subjected to Surface Alloying and Electron Beam Processing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gromov, V.E.; Konovalov, S.V.; Ivanov, Y.F.; Osintsev, K.A. Structure and Properties of High Entropy Alloys; Springer International Publishing: Cham, Switzerland, 2021; 110p. [Google Scholar]
- Rogachev, A.S. Structure, stability and properties of HEA. Phys. Met. Met. Sci. 2020, 121, 807–841. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Cantor, B. Multicomponent and high entropy alloys. Entropy 2014, 16, 4749–4768. [Google Scholar] [CrossRef] [Green Version]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liaw, P.K.; Zhang, Y. Science and technology in high-entropy alloys. Sci China Mater. 2018, 61, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Gorban, V.F.; Krapivka, N.A.; Firstov, S.A. High-entropy alloys: Interrelations between electron concentration, phase composition, lattice parameter, and properties. Phys. Metals Metallogr. 2017, 118, 970–981. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Gan, J.-Y.; Lin, S.-J.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metal. Mater. Trans. A 2004, 35A, 2533–2536. [Google Scholar] [CrossRef]
- Yeh, J.-W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mater. 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Tong, C.J.; Chen, S.K.; Yeh, J.W.; Shun, T.T.; Tsau, C.H.; Lin, S.J.; Chang, S.Y. Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multi-principal Elements. Metall. Mater. Trans. A 2004, 36A, 881–893. [Google Scholar]
- Tsai, K.-Y.; Tsai, M.-H.; Yeh, J.-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yeh, J.-W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Bodunrin, M.O.; Oke, S.R. Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: A review. J. Mater. Res. Technol. 2016, 5, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S.; Bhattacharjee, P.P. High-Entropy Alloys, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; 374p. [Google Scholar]
- Zhang, Y. High-Entropy Materials. A Brief Introduction; Springer Nature: Singapore, 2019; 159p. [Google Scholar]
- Ma, Y.; Peng, G.J.; Ven, D.H.; Zhang, T.H. Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloys film with two different structure states. Mater. Sci. Eng. A 2015, 621, 111–117. [Google Scholar] [CrossRef]
- Wang, L.M.; Chen, G.G.; Yeh, J.W.; Ke, S.T. The microstructure and strengthening mechanism of thermal spray coating NixCo0.6 Fe0.2CrySizAlTi0.2 high-entropy alloys. Mater. Chem. Phy. 2011, 126, 880–885. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, W.; He, Y.; Li, M.X.; Guo, S. Formation of core-shell structure in high-entropy alloy coating by laser cladding. Appl. Surf. Sci. 2015, 363, 543–547. [Google Scholar] [CrossRef]
- Gao, W.Y.; Chang, C.; Li, G.; Xue, Y.F.; Wang, J.J.; Zhang, Z.Y.; Lin, X.G. Study on the laser cladding of FeCrNi coating. Optik 2019, 178, 950–957. [Google Scholar] [CrossRef]
- Rong, Z.; Wang, C.; Wang, Y.; Dongetal, M. Microstructure and properties of FeCoNiCrX (Xdouble bondMn, Al) high-entropy alloy coatings. J. Alloy. Compd. 2022, 921, 166061. [Google Scholar] [CrossRef]
- Chang, S.Y.; Lin, S.Y.; Huang, Y.C.; Wu, C.L. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings. Surf. Coat. Technol. 2010, 204, 3307–3314. [Google Scholar] [CrossRef]
- Shen, W.-J.; Tsai, M.-H.; Chang, Y.-S.; Yeh, J.-W. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings. Thin Solid Film. 2012, 520, 6183–6188. [Google Scholar] [CrossRef]
- Braic, V.; Vladescu, A.; Balaceanu, M.; Luculescu, C.R.; Braic, M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf. Coat. Technol. 2012, 211, 117–121. [Google Scholar] [CrossRef]
- Lin, M.I.; Tsai, M.H.; Shen, W.J.; Yeh, J.W. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin Solid Films. 2010, 518, 2732–2737. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Wang, Y.; Wu, K.; Liu, G.; Sun, J. Size- dependent mechanical properties and deformation mechanisms in Cu/NbMoTaW nanolaminates. Sci. China Mater. 2020, 63, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.H.; Ma, Y.J.; Cai, Y.P.; Wang, G.J.; Meng, X.K. High strength dual-phase high entropy alloys with a tunable nanolayer thickness. Scr. Mater. 2019, 173, 149–153. [Google Scholar] [CrossRef]
- Xu, H.; Zang, J.; Yuan, Y.; Zhou, Y.; Tian, P.; Wang, Y. In-situ assembly from graphene encapsulated CoCrFeMnNi high-entropy alloy nanoparticles for improvement corrosion resistance and mechanical properties in metal matrix composites. J. Alloys Compd. 2019, 811, 152082. [Google Scholar] [CrossRef]
- Wang, Y.; Kuang, S.; Yu, X.; Wang, L.; Huang, W. Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering. Surf. Coat. Technol. 2020, 403, 126374. [Google Scholar] [CrossRef]
- Zhoo, S.; He, L.; Fan, X.; Liu, C.; Long, J.; Wang, L.; Chang, H.; Wang, J.; Zhang, W. Microstructure and chloride corrosion property of nanocrystalline AlTiCrNiTa high entropy alloy coating on X80 pipeline steel. Surf. Coat. Technol. 2019, 375, 215–220. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, S.; Wang, Z.Y.; Zhang, C.H.; Chen, H.T.; Chen, J. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMox high entropy alloy coating: The role of Mo. Inter. J. Refectory Met. Hard Mater. 2022, 102, 105721. [Google Scholar] [CrossRef]
- Ye, F.; Jiao, Z.; Gio, L.; Feng, L.; Yu, J. Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer. Vacuum 2020, 174, 109178. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Tian, X.; Chen, P.; Yang, H.; Hao, J. Microstructure and properties of AlCoCrFeNiSi high-entropy alloy coating on AISI 304 stainless steel by laser cladding. J. Mater. Eng. Perform. 2020, 29, 278–288. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, T.; Sum, S.; Zhang, G.; Tian, X.; Chen, P. Microstructure and dislocation density of AlCoCrFeNiSix high entropy alloy coatings by laser cladding. Mater. Lett. 2021, 283, 128746. [Google Scholar] [CrossRef]
- Ye, Q.; Feng, K.; Li, Z.; Lu, F.; Li, R.; Huang, J.; Wu, Y. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl. Surf. Sci. 2017, 396, 1420–1426. [Google Scholar] [CrossRef]
- Jiang, H.; Han, K.; Li, D.; Cao, Z. Synthesis and characterization of AlCoCrFeNiNbx high-entropy alloy coatings by laser cladding. Crystals 2019, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.S.; Zhang, M.; Zhao, G.L.; Wang, X.H.; Wang, J.F. Microstructure and properties of ceramic particle reinforced FeCoNiCrMnTi high entropy alloy laser cladding coating. Intermetallics 2022, 140, 107402. [Google Scholar] [CrossRef]
- Zhong, M.; Wang, D.; He, L.; Ye, X.; Ouyang, W.; Xu, Z.; Zhang, W.; Zhou, X. Microstructure and elevated temperature wear behavior of laser-cladded AlCrFeMnNi high-entropy alloy coating. Opt. Laser Technol. 2022, 149, 107845. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, Z.; Yao, Z.; Liu, Y.; Lin, S.; He, M.; Lu, S.; Wu, X. A high-corrosion-resistant high-entropy alloys (HEAs) coatings with single BCC solid solution structure by laser remelting. Mater. Lett. 2022, 324, 132728. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Liu, J.; Gao, W.; Du, X.; Hao, J. Microstructural evolution and properties of dual-layer CoCrFeMnTi0.2 high-entropy alloy coating fabricated by laser cladding. Opt. Laser Technol. 2021, 134, 106646. [Google Scholar] [CrossRef]
- Jiang, X.J.; Wang, S.Z.; Fu, H.; Chen, G.Y.; Ran, Q.X.; Wang, S.Q.; Han, R.H. A novel high-entropy alloy coating on Ti-6Al-4V substrate by laser cladding. Mater. Lett. 2022, 308, 131131. [Google Scholar] [CrossRef]
- Deng, C.; Wang, C.; Chai, L.; Wang, T.; Luo, J. Mechanical and chemical properties of CoCrFeNiMo0,2 HEA coating fabricated on Ti-6Al-4V by laser cladding. Intermetallics 2022, 144, 107504. [Google Scholar] [CrossRef]
- Bingyan, H.; Shayoi, B.; Wenbo, D.; Weihing, H.; Xue, Y.; Fangfang, C.; Jiajie, C.; Xianghan, G.; Sheng, Z. Laser-irradiation-induced dynamically recrystallized microstructure and properties of supersonic-particle-deposited Ni-Fe-Cr-Nb-Ti-Al high-entropy alloy coating. Mater. Charact. 2022, 183, 111600. [Google Scholar] [CrossRef]
- Guo, J.; Goh, M.; Zhu, Z.; Lee, X.; Nai, M.L.S.; Wei, J. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater. Des. 2018, 153, 211–220. [Google Scholar] [CrossRef]
- Lindner, T.; Lobel, M.; Sattler, B.; Lampke, T. Surface hardening of FCC phase high-entropy alloy system by powder-pack boriding. Surf. Coat. Technol. 2019, 37, 389–394. [Google Scholar] [CrossRef]
- Erdogan, A.; Giinen, A.; Gok, M.S.; Zeytin, S. Microstructure and mechanical properties of borided CoCrFeNiAl0.25Ti0.5 high entropy alloy produced by powder metallurgy. Vacuum 2021, 183, 109820. [Google Scholar] [CrossRef]
- Ivanov, Y.F.; Gromov, V.E.; Zagulyaev, D.V.; Konovalov, S.V.; Rubannikova, Y.A.; Semin, A.P. Prospects for the application of surface treatment of alloys by electron beams in state of the art technologies. Prog. Phys. Met. 2020, 21, 345–362. [Google Scholar] [CrossRef]
- Gromov, V.E.; Konovalov, S.V.; Ivanov, Y.F.; Shliarova, Y.A.; Vorobyov, S.V.; Semin, A.P. Structure and properties of the CrMnFeCoNi high-entropy alloy irradiated with a pulsed electron beam. J. Mater. Res. Techn. 2022, 19, 4258–4269. [Google Scholar] [CrossRef]
- Osintsev, K.A.; Gromov, V.E.; Ivanov, Y.F.; Konovalov, S.V. Evolution of structure in AlCoCrFeNi HEA irradiated by pulsed electron beam. Metals 2021, 11, 1228. [Google Scholar] [CrossRef]
- Nevskii, S.A.; Konovalov, S.V.; Osintsev, K.A.; Ivanov, Y.F.; Granovskii, A.Y.; Gromov, V.E. The mechanism of formation of surface micro- and nanostructures in the AlCoCrFeNi high-entropy alloy during electron-beam treatment. Lett. Mater. 2021, 11, 309–314. [Google Scholar] [CrossRef]
Element | U, keV | Mass. % | Error, % | at. % |
---|---|---|---|---|
B | 0.183 | 3.28 | 0.05 | 15.19 |
Cr | 5.411 | 11.95 | 0.03 | 11.51 |
Fe | 6.398 | 26.15 | 0.01 | 23.47 |
Ni | 7.471 | 55.36 | 0.01 | 47.26 |
Cu | 8.040 | 3.27 | 0.16 | 2.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, Y.; Gromov, V.; Konovalov, S.; Shugurov, V.; Efimov, M.; Teresov, A.; Petrikova, E.; Panchenko, I.; Shliarova, Y. Structure and Properties of Al-Co-Cr-Fe-Ni High-Entropy Alloy Subjected to Electron–Ion Plasma Treatment. Metals 2022, 12, 1987. https://doi.org/10.3390/met12111987
Ivanov Y, Gromov V, Konovalov S, Shugurov V, Efimov M, Teresov A, Petrikova E, Panchenko I, Shliarova Y. Structure and Properties of Al-Co-Cr-Fe-Ni High-Entropy Alloy Subjected to Electron–Ion Plasma Treatment. Metals. 2022; 12(11):1987. https://doi.org/10.3390/met12111987
Chicago/Turabian StyleIvanov, Yurii, Victor Gromov, Sergey Konovalov, Vladimir Shugurov, Mikhail Efimov, Anton Teresov, Elizaveta Petrikova, Irina Panchenko, and Yulia Shliarova. 2022. "Structure and Properties of Al-Co-Cr-Fe-Ni High-Entropy Alloy Subjected to Electron–Ion Plasma Treatment" Metals 12, no. 11: 1987. https://doi.org/10.3390/met12111987
APA StyleIvanov, Y., Gromov, V., Konovalov, S., Shugurov, V., Efimov, M., Teresov, A., Petrikova, E., Panchenko, I., & Shliarova, Y. (2022). Structure and Properties of Al-Co-Cr-Fe-Ni High-Entropy Alloy Subjected to Electron–Ion Plasma Treatment. Metals, 12(11), 1987. https://doi.org/10.3390/met12111987