Precipitation Behavior and Microstructural Evolution of α Phase during Hot Deformation in a Novel β-Air-Cooled Metastable β-Type Ti-B12 Alloy
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Ti-B12 Alloy Preparation and Processing
2.2. Isothermal Compression Testing
3. Results and Discussion
3.1. Hot-Deformed Microstructural Characteristics under Various True Strains
3.2. Precipitation Behavior of α Phase
3.3. Precipitation Behavior of α Phase and its Formation Mechanism
3.4. Crystallographic Orientation Relationship between Precipitated α Phase and Parent β Phase
4. Conclusions
- The volume fraction of α phases precipitated within the parent β phase gradually increases with an increase in true strain. A large proportion of α phases is prone to be precipitated at HAGBs and LAGBs during isothermal deformation. On the contrary, only a small amount of spherical α phases is precipitated within the β grain.
- The size of the precipitated α phase during isothermal compression is much finer than that of α precipitate during the same solution-plus-aging treatment. Some finer lath-shaped α phases are generated after hot-compressed deformation. Meanwhile, some precipitated α phases are non-uniformly distributed within the β grain.
- The crystallographic orientation relationships for most of spherical α precipitates formed at LAGBs and within the β grains are similar. On the contrary, the crystallographic orientation relationships for α precipitates at grain boundaries are significantly different.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kolli, R.P.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Raza, D.; Kumar, G.; Uzair, M.; Singh, M.K.; Sultan, D.; Kumar, R. Development and heat treatment of β-phase titanium alloy for orthopedic application. Mater. Today Proc. 2022, 50, 649–654. [Google Scholar] [CrossRef]
- Hua, K.; Wan, Q.; Kou, H.; Zhang, F.; Zhang, Y.; Li, J. The interplay relationship between phase transformation and deformation behavior during hot compression in a metastable β titanium alloy. Mater. Des. 2021, 197, 109275. [Google Scholar] [CrossRef]
- Pushp, P.; Dasharath, S.; Arati, C. Classification and applications of titanium and its alloys. Mater. Today Proc. 2022, 54, 537–542. [Google Scholar] [CrossRef]
- Williams, J.C.; Boyer, R.R. Opportunities and issues in the application of titanium alloys for aerospace components. Metals 2020, 10, 705. [Google Scholar] [CrossRef]
- Tiyyagura, H.R.; Kumari, S.; Mohan, M.K.; Pant, B.; Rao, M.N. Degradation behavior of metastable β Ti-15-3 alloy for fastener applications. J. Alloys Compd. 2019, 775, 518–523. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiang, S.; Tan, Y.B.; Ji, X.M. Study on ω-assisted α nucleation behavior of metastable β-Ti alloys from phase transformation mechanism. J. Alloys Compd. 2022, 890, 161686. [Google Scholar] [CrossRef]
- Hua, K.; Zhang, Y.; Tong, Y.; Zhang, F.; Kou, H.; Li, X.; Wang, H.; Li, J. Enhanced mechanical properties of a metastable β titanium alloy via optimized thermomechanical processing. Mater. Sci. Eng. A 2022, 840, 142997. [Google Scholar] [CrossRef]
- Song, B.; Xiao, W.; Fu, Y.; Ma, C.; Zhou, L. Role of nanosized intermediate phases on α precipitation in a high-strength near β titanium alloy. Mater. Lett. 2020, 275, 128147. [Google Scholar] [CrossRef]
- Xiao, W.; Dargusch, M.S.; Kent, D.; Zhao, X.; Ma, C. Activation of homogeneous precursors for formation of uniform and refined α precipitates in a high-strength β-Ti alloy. Materialia 2020, 9, 100557. [Google Scholar] [CrossRef]
- Du, Z.; Guo, H.; Liu, J.; Cheng, J.; Zhao, X.; Wang, X.; Liu, F.; Cui, X. Microstructure evolution during aging heat treatment and its effects on tensile properties and dynamic Young’s modulus of a biomedical β titanium alloy. Mater. Sci. Eng. A 2020, 791, 139677. [Google Scholar] [CrossRef]
- Wu, C.; Zhan, M. Microstructural evolution, mechanical properties and fracture toughness of near β titanium alloy during different solution plus aging heat treatments. J. Alloys Compd. 2019, 805, 1144–1160. [Google Scholar] [CrossRef]
- Liu, Q.; Qiu, C. Variant selection of α precipitation in a beta titanium alloy during selective laser melting and its influence on mechanical properties. Mater. Sci. Eng. A 2020, 784, 139336. [Google Scholar] [CrossRef]
- Dong, R.; Kou, H.; Zhao, Y.; Zhang, X.; Yang, L.; Hou, H. Morphology characteristics of α precipitates related to the crystal defects and the strain accommodation of variant selection in a metastable β titanium alloy. J. Mater. Sci. Technol. 2021, 95, 1–9. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, F.; Torrens, R.; Bolzoni, L. Allotropic phase transformation and high-temperature tensile deformation behaviour of powder metallurgy Ti-5553 alloy. Int. J. Refract. Met. Hard Mater. 2020, 90, 105235. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, X.; Nie, X.-A.; Zhao, S.; Liu, H.; Yi, D.; Zhang, X. Finer subgrain microstructure induced by multi-pass compression in α + β phase region in a near-β Ti-5Al-5Mo-5V-1Cr-1Fe alloy. J. Alloys Compd. 2019, 788, 136–147. [Google Scholar] [CrossRef]
- Lin, Y.C.; Pang, G.-D.; Jiang, Y.-Q.; Liu, X.-G.; Zhang, X.-Y.; Chen, C.; Zhou, K.-C. Hot compressive deformation behavior and microstructure evolution of a Ti-55511 alloy with basket-weave microstructures. Vacuum 2019, 169, 108878. [Google Scholar] [CrossRef]
- Qin, D.; Guo, D.; Zheng, L.; Li, Y. Dynamic recrystallization of Ti-5553 alloy during sub-transus thermomechanical processing: Mechanisms and its role in formation of a bi-modal structure. J. Alloys Compd. 2018, 769, 725–731. [Google Scholar] [CrossRef]
- Qian, B.; Zhang, J.; Fu, Y.; Sun, F.; Wu, Y.; Cheng, J.; Vermaut, P.; Prima, F. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration. J. Mater. Sci. Technol. 2021, 65, 228–237. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, Y.J.; Liu, B. Experimental and simulated investigation of the deformation behavior and microstructural evolution of Ti6554 titanium alloy during an electropulsing-assisted microtension process. Mater. Sci. Eng. A 2022, 838, 142745. [Google Scholar] [CrossRef]
- Hua, K.; Wan, Q.; Zhang, Y.; Kou, H.; Zhang, F.; Li, J. Crystallography and microstructure of the deformation bands formed in a metastable β titanium alloy during isothermal compression. Mater. Charact. 2021, 176, 111119. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, J.; Zhang, R.; Chen, J.; He, J.; Yuan, T. A new insight into the α phase precipitation in β titanium alloy. Vacuum 2021, 189, 110272. [Google Scholar] [CrossRef]
- Pang, G.-D.; Lin, Y.C.; Jiang, Y.-Q.; Zhang, X.-Y.; Liu, X.-G.; Xiao, Y.-W.; Zhou, K.-C. Precipitation behaviors and orientation evolution mechanisms of α phases in Ti-55511 titanium alloy during heat treatment and subsequent hot deformation. Mater. Charact. 2020, 167, 110471. [Google Scholar] [CrossRef]
- Coakley, J.; Vorontsov, V.A.; Jones, N.G.; Radecka, A.; Bagot, P.A.J.; Littrell, K.C.; Heenan, R.K.; Hu, F.; Magyar, A.P.; Bell, D.C.; et al. Precipitation processes in the beta-titanium alloy Ti–5Al–5Mo–5V–3Cr. J. Alloys Compd. 2015, 646, 946–953. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Khatirkar, R.K.; Kumar, A.; Thool, K.; Bibhanshu, N.; Suwas, S. Microstructure and texture development in Ti-15V-3Cr-3Sn-3Al alloy–Possible role of strain path. Mater. Charact. 2019, 156, 109884. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, Y.; Qi, M.; Huang, S.; Youssef, S.S.; Xi, G.; Qiu, J.; Lei, J.; Yang, R.; Wang, P. The effect of precursory α and ω phase on microstructure evolution and tensile properties of metastable β titanium alloy. J. Mater. Res. Technol. 2022, 16, 912–921. [Google Scholar] [CrossRef]
- Zherebtsov, S.; Murzinova, M.; Salishchev, G.; Semiatin, S. Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing. Acta Mater. 2011, 59, 4138–4150. [Google Scholar] [CrossRef]
- Chen, W.; Yu, G.; Li, K.; Wang, Y.; Zhang, J.; Sun, J. Plastic instability in Ti–6Cr–5Mo–5V–4Al metastable β-Ti alloy containing the β-spinodal decomposition structures. Mater. Sci. Eng. A 2021, 811, 141052. [Google Scholar] [CrossRef]
- Chen, W.; Yang, S.; Lin, Y.; Chen, C.; Zhang, X.; Zhou, K. Multi-scale characterization of deformation features and precipitation behavior in a near β-Ti alloy. Mater. Charact. 2020, 169, 110637. [Google Scholar] [CrossRef]
- Cheng, J.; Li, J.; Yu, S.; Du, Z.; Zhang, X.; Zhang, W.; Gai, J.; Wang, H.; Song, H.; Yu, Z. Influence of Isothermal ω Transitional Phase-Assisted Phase Transition From β to α on Room-Temperature Mechanical Performance of a Meta-Stable β Titanium Alloy Ti−10Mo−6Zr−4Sn−3Nb (Ti-B12) for Medical Application. Front. Bioeng. Biotechnol. 2021, 1518. [Google Scholar] [CrossRef]
- Dai, S.; Wang, Y.; Chen, F. Effects of annealing on the microstructures and mechanical properties of biomedical cold-rolled Ti–Nb–Zr–Mo–Sn alloy. Mater. Charact. 2015, 104, 16–22. [Google Scholar] [CrossRef]
- Alabort, E.; Tang, Y.T.; Barba, D.; Reed, R.C. Alloys-by-design: A low-modulus titanium alloy for additively manufactured biomedical implants. Acta Mater. 2022, 229, 117749. [Google Scholar] [CrossRef]
- Zhang, X.; Kou, H.; Li, J.; Zhang, F.; Zhou, L. Evolution of the secondary α phase morphologies during isothermal heat treatment in Ti-7333 alloy. J. Alloys Compd. 2013, 577, 516–522. [Google Scholar] [CrossRef]
- Dong, R.; Li, J.; Fan, J.; Kou, H.; Tang, B. Precipitation of α phase and its morphological evolution during continuous heating in a near β titanium alloy Ti-7333. Mater. Charact. 2017, 132, 199–204. [Google Scholar] [CrossRef]
- Fan, J.; Kou, H.; Lai, M.; Tang, B.; Chang, H.; Li, J. Hot deformation mechanism and microstructure evolution of a new near β titanium alloy. Mater. Sci. Eng. A 2013, 584, 121–132. [Google Scholar] [CrossRef]
- Ding, R.; Gong, J.; Wilkinson, A.J.; Jones, I.P. < c + a> Dislocations in deformed Ti–6Al–4V micro-cantilevers. Acta Mater. 2014, 76, 127–134. [Google Scholar] [CrossRef]
- Elmer, J.W.; Palmer, T.A.; Babu, S.S.; Specht, E.D. Low temperature relaxation of residual stress in Ti–6Al–4V. Scr. Mater. 2005, 52, 1051–1056. [Google Scholar] [CrossRef]
- Ivanov, A.; Orlov, A.; Golubovskii, E. The influence of thermomechanical processing on the structure and mechanical properties of rods made of high-strength titanium alloys of different classes. Mater. Today Proc. 2019, 19, 2163–2166. [Google Scholar] [CrossRef]
- Mironov, S.; Murzinova, M.; Zherebtsov, S.; Salishchev, G.A.; Semiatin, S.L. Microstructure evolution during warm working of Ti–6Al–4V with a colony-α microstructure. Acta Mater. 2009, 57, 2470–2481. [Google Scholar] [CrossRef]
- He, L.; Manshadi, A.D.; Dippenaar, R. The evolution of microstructure of Ti–6Al–4V alloy during concurrent hot deformation and phase transformation. Mater. Sci. Eng. A 2012, 549, 163–167. [Google Scholar] [CrossRef]
- Furuhara, T.; Takagi, S.; Watanabe, H.; Maki, T. Crystallography of grain boundary α precipitates in a β titanium alloy. Metall. Mater. Trans. A 1996, 27, 1635–1646. [Google Scholar] [CrossRef]
- Fan, J.K.; Kou, H.C.; Lai, M.J.; Tang, B.; Chang, H.; Li, J.S. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333. Mater. Des. 2013, 49, 945–952. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Wang, S.; Song, H.; Zhang, S.; Wang, K.; Ouyang, D. Dynamic globularization mechanism during hot working of Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si alloy with lamellar microstructure. Mater. Charact. 2021, 171, 110749. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Yu, S.; Li, J.; Gai, J.; Du, Z.; Dong, F.; Zhang, J.; Zhang, X. Precipitation Behavior and Microstructural Evolution of α Phase during Hot Deformation in a Novel β-Air-Cooled Metastable β-Type Ti-B12 Alloy. Metals 2022, 12, 770. https://doi.org/10.3390/met12050770
Cheng J, Yu S, Li J, Gai J, Du Z, Dong F, Zhang J, Zhang X. Precipitation Behavior and Microstructural Evolution of α Phase during Hot Deformation in a Novel β-Air-Cooled Metastable β-Type Ti-B12 Alloy. Metals. 2022; 12(5):770. https://doi.org/10.3390/met12050770
Chicago/Turabian StyleCheng, Jun, Sen Yu, Jinshan Li, Jinyang Gai, Zhaoxin Du, Fuyu Dong, Jinyong Zhang, and Xiaoyong Zhang. 2022. "Precipitation Behavior and Microstructural Evolution of α Phase during Hot Deformation in a Novel β-Air-Cooled Metastable β-Type Ti-B12 Alloy" Metals 12, no. 5: 770. https://doi.org/10.3390/met12050770
APA StyleCheng, J., Yu, S., Li, J., Gai, J., Du, Z., Dong, F., Zhang, J., & Zhang, X. (2022). Precipitation Behavior and Microstructural Evolution of α Phase during Hot Deformation in a Novel β-Air-Cooled Metastable β-Type Ti-B12 Alloy. Metals, 12(5), 770. https://doi.org/10.3390/met12050770