Enhanced Corrosion Resistance and Biological Properties of Ultrafine-Grained Ti15Zr5Cu Alloy
Abstract
:1. Introduction
2. Materials and Experimental Procedures
2.1. Processing Window for the Ti15Zr5Cu Alloy
2.2. Corrosion Resistance and Biological Properties
3. Results and Discussions
3.1. Flow Behavior
3.2. Constitutive Equation
3.3. Microstructure Evolution during Hot Deformations
3.4. Processing Map
3.5. Microstructure and Mechanical Property of the As-Rolled Ti15Zr5Cu Alloy
3.6. Corrosion Resistance
3.7. Antibacterial Property
3.8. Cytotoxicity Test
4. Conclusions
- (1)
- According to the flow stress–strain curves, the constitutive equation of the as-quenched Ti15Zr5Cu alloy was determined as . Cu and Zr alloying would increase hot deformation activation energy of α titanium.
- (2)
- Processing map and SEM observation results indicated that the as-quenched Ti15Zr5Cu alloy possessed excellent hot workability and could be converted to an ultrafine-grained microstructure under the deformation condition of 0.05 ≤ ≤ 1 and 730 °C ≤ T ≤ 750 °C.
- (3)
- Electrochemical tests showed that a denser passive film formed on the surface of the ultrafine-grained Ti15Zr5Cu alloy, which contributed to better corrosion resistance than the commercial pure Ti alloy and the Ti15Zr alloy.
- (4)
- Compared to the commercial pure Ti and the Ti15Zr alloy, the ultrafine-grained Ti15Zr5Cu alloy exhibited outstanding antibacterial properties, with an antibacterial rate against E. coli and S. aureus above 99%.
- (5)
- Ultrafine-grained Ti15Zr5Cu alloy was non-cytotoxic and exhibited good osteogenesis in the early stage of co-culturing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Song, W.; Koenigsmann, K.; Zhang, S.; Ren, L.; Yang, K. The Role of Prismatic Slip Dependent Dynamic Recrystallization in the Fabrication of a Submicrocrystalline Ti-Cu Alloy with High Thermostability. Mater. Des. 2020, 188. [Google Scholar] [CrossRef]
- Meiri, H.; Banin, E.; Roll, M.; Rousseau, A. Toxic Effects of Aluminum on Nerve-Cells and Synaptic Transmission. Prog. Neurobiol. 1993, 40, 89–121. [Google Scholar] [CrossRef]
- Morant, C.; Lopez, M.F.; Gutierrez, A.; Jimenez, J.A. Afm and Sem Characterization of Non-Toxic Vanadium-Free Ti Alloys Used as Biomaterials. Appl. Surf. Sci. 2003, 220, 79–87. [Google Scholar] [CrossRef]
- Kim, R.W.; Kim, H.S.; Choe, H.C.; Son, M.K.; Chung, C.H. Microscopic Analysis of Fractured Dental Implant Surface after Clinical Use. In Proceedings of the 11th International Conference on the Mechanical Behavior of Materials (ICM), Como, Italy, 5–9 June 2011; pp. 1955–1960. [Google Scholar]
- Kolawole, S.K.; Hai, W.; Zhang, S.Y.; Sun, Z.Q.; Siddiqui, M.A.; Ullah, I.; Song, W.; Witte, F.; Yang, K. Preliminary Study of Microstructure, Mechanical Properties and Corrosion Resistance of Antibacterial Ti-15Zr-xCu Alloy for Dental C Application. J. Mater. Sci. Technol. 2020, 50, 31–43. [Google Scholar] [CrossRef]
- Gao, W.; Wang, H.; Koenigsmann, K.; Zhang, S.; Ren, L.; Yang, K. Fabrication of Ultrafine-Grained Ti-15Zr-xCu Alloys through Martensite Decompositions under Thermomechanical Coupling Conditions. J. Mater. Sci. Technol. 2022, 127, 19–28. [Google Scholar] [CrossRef]
- Wang, H.; Song, W.; Liu, M.F.; Zhang, S.Y.; Ren, L.; Qiu, D.; Chen, X.Q.; Yang, K. Manufacture-Friendly Nanostructured Metals Stabilized by Dual-Phase Honeycomb Shell. Nat. Commun. 2022, 13, 2034. [Google Scholar] [CrossRef]
- Prasad, Y.; Seshacharyulu, T. Processing Maps for Hot Working of Titanium Alloys. Mater. Sci. Eng. A 1998, 243, 82–88. [Google Scholar] [CrossRef]
- Ansari, G.; Fattah-alhosseini, A. On the Passive and Semiconducting Behavior of Severely Deformed Pure Titanium in Ringer’s Physiological Solution at 37 Degrees C: A Trial of the Point Defect Model. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 64–71. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Vakili-Azghandi, M.; Sheikhi, M.; Keshavarz, M.K. Passive and Electrochemical Response of Friction Stir Processed Pure Titanium. J. Alloys Compd. 2017, 704, 499–508. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Ansari, A.R.; Mazaheri, Y.; Keshavarz, M.K. Effect of Immersion Time on the Passive and Electrochemical Response of Annealed and Nano-Grained Commercial Pure Titanium in Ringer’s Physiological Solution at 37 Degrees C. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 71, 771–779. [Google Scholar] [CrossRef]
- Blanc, C.; Lavelle, B.; Mankowski, G. The Role of Precipitates Enriched with Copper on the Susceptibility to Pitting Corrosion of the 2024 Aluminium Alloy. Corros. Sci. 1997, 39, 495–510. [Google Scholar] [CrossRef]
- Xin, C.; Wang, N.; Chen, Y.N.; He, B.B.; Zhao, Q.Y.; Chen, L.; Tang, Y.F.; Luo, B.L.; Zhao, Y.Q.; Yang, X.K. Biological Corrosion Behaviour and Antibacterial Properties of Ti-Cu Alloy with Different Ti2Cu Morphologies for Dental Applications. Mater. Des. 2022, 215, 110540. [Google Scholar] [CrossRef]
- Losertova, M.; Stefek, O.; Galajda, M.; Konecna, K.; Martynkova, G.S.; Barabaszova, K.C. Microstructure and Electrochemical Behavior of TiO2 Nanotubes Coated on Titanium-Based Substrate before and after Thermal Treatment. J. Nanosci. Nanotechnol. 2019, 19, 2989–2996. [Google Scholar] [CrossRef]
- Balasundaram, G.; Webster, T.J. Increased Osteoblast Adhesion on Nanograined Ti Modified with KRSR. J. Biomed. Mater. Res. Part A 2007, 80A, 602–611. [Google Scholar] [CrossRef]
- Truong, V.K.; Lapovok, R.; Estrin, Y.S.; Rundell, S.; Wang, J.Y.; Fluke, C.J.; Crawford, R.J.; Ivanova, E.R. The Influence of Nano-Scale Surface Roughness on Bacterial Adhesion to Ultrafine-Grained Titanium. Biomaterials 2010, 31, 3674–3683. [Google Scholar] [CrossRef]
- Liu, R.; Tang, Y.L.; Zeng, L.L.; Zhao, Y.; Ma, Z.; Sun, Z.Q.; Xiang, L.B.; Ren, L.; Yang, K. In Vitro and in Vivo Studies of Anti-Bacterial Copper-Bearing Titanium Alloy for Dental Application. Dent. Mater. 2018, 34, 1112–1126. [Google Scholar] [CrossRef]
- Liu, R.; Memarzadeh, K.; Chang, B.; Zhang, Y.M.; Ma, Z.; Allaker, R.P.; Ren, L.; Yang, K. Antibacterial Effect of Copper-Bearing Titanium Alloy (Ti-Cu) against Streptococcus Mutans and Porphyromonas Gingivalis. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ren, L.; Yang, K. Cytotoxicity of Ti-6Al-4V-5Cu Alloy to MC3T3-E1 Cells. Acta Metall. Sin. Engl. Lett. 2021, 34, 694–700. [Google Scholar] [CrossRef]
- Kassner, M.E. Fundamentals of Creep in Metals and Alloys; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Reed-Hill, R.E. Physical Metallurgy Principles; Van Nostrand: New York, NY, USA, 1964; pp. 243–262. [Google Scholar]
- Kumar, N.; Kumar, S.; Nath, S.K. Determination of Zener-Hollomon Parameter of a Low Alloy Medium Carbon Steel under Hot Compression Physical Simulation. In Proceedings of the 4th International Conference on Thermo-mechanical Simulation and Processing of Steels (SimPro 16), Ranchi, India, 10–12 February 2016; pp. 346–353. [Google Scholar]
- Sargent, P.M.; Ashby, M.F. Deformation Maps for Titanium and Zirconium. Scr. Metall. 1982, 16, 1415–1422. [Google Scholar] [CrossRef]
- Gale, W.F.; Totemeier, T.C. (Eds.) Diffusion in Metals. In Smithells Metals Reference Book, 8th ed.; Butterworth-Heinemann: Oxford, UK, 2004; pp. 13-11–13-120. [Google Scholar]
- Wang, K.; Lu, S.; Fu, M.W.; Li, X.; Dong, X. Optimization of β/near-β forging process parameters of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si by using processing maps. Mater. Charact. 2009, 60, 492–498. [Google Scholar] [CrossRef]
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; et al. Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science 2022, 375, 1254. [Google Scholar] [CrossRef]
- Ren, L.; Ma, Z.; Li, M.; Zhang, Y.; Liu, W.Q.; Liao, Z.H.; Yang, K. Antibacterial Properties of Ti-6Al-4V-xCu Alloys. J. Mater. Sci. Technol. 2014, 30, 699–705. [Google Scholar] [CrossRef]
- Ren, L.; Yang, K.; Guo, L.; Chai, H.W. Preliminary Study of Anti-Infective Function of a Copper-Bearing Stainless Steel. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1204–1209. [Google Scholar] [CrossRef]
- Yu, L.; Jin, G.D.; Ouyang, L.P.; Wang, D.H.; Qiao, Y.Q.; Liu, X.Y. Antibacterial Activity, Osteogenic and Angiogenic Behaviors of Copper-Bearing Titanium Synthesized by PIII&D. J. Mater. Chem. B 2016, 4, 1296–1309. [Google Scholar] [CrossRef]
- Heidenau, F.; Mittelmeier, W.; Detsch, R.; Haenle, M.; Stenzel, F.; Ziegler, G.; Gollwitzer, H. A Novel Antibacterial Titania Coating: Metal Ion Toxicity and in Vitro Surface Colonization. J. Mater. Sci. Mater. Med. 2005, 16, 883–888. [Google Scholar] [CrossRef]
Strain Rate | 0.01 s−1 | 0.1 s−1 | 1 s−1 | 10 s−1 | |
---|---|---|---|---|---|
Temperature | |||||
710 °C | 178.62 | 375.22 | 446.80 | 521.59 | |
750 °C | 103.61 | 194.51 | 301.55 | 325.83 | |
790 °C | 73.878 | 144.56 | 205.16 | 252.04 | |
830 °C | 53.50 | 111.42 | 168.52 | 213.25 |
Strain | Temperature | 0.01 s−1 | 0.1 s−1 | 1 s−1 | 10 s−1 |
---|---|---|---|---|---|
0.2 | 710 °C | 114 | 256 | 291 | 372 |
750 °C | 54 | 96 | 189 | 268 | |
790 °C | 38 | 84 | 160 | 218 | |
830 °C | 28 | 67 | 131 | 176 | |
0.4 | 710 °C | 77 | 185 | 223 | 306 |
750 °C | 46 | 80 | 155 | 256 | |
790 °C | 32 | 66 | 147 | 197 | |
830 °C | 23 | 55 | 117 | 164 | |
0.6 | 710 °C | 56 | 147 | 223 | 279 |
750 °C | 36 | 68 | 154 | 247 | |
790 °C | 26 | 55 | 138 | 184 | |
830 °C | 22 | 46 | 100 | 154 | |
0.8 | 710 °C | 42 | 117 | 195 | 263 |
750 °C | 33 | 59 | 155 | 228 | |
790 °C | 24 | 50 | 128 | 183 | |
830 °C | 23 | 45 | 92 | 155 | |
1.0 | 710 °C | 32 | 101 | 195 | 246 |
750 °C | 32 | 52 | 155 | 211 | |
790 °C | 22 | 47 | 118 | 176 | |
830 °C | 28 | 51.3 | 94 | 159 |
Icorr/nA·cm−2 | Ecorr/V | Rs/Ω·cm−2 | Q/μF·cm−2 | Rct/Ω·cm−2 | |
---|---|---|---|---|---|
Ti | 61.06 | −0.144 | 24.48 | 15.1 | 8.6 × 105 |
Ti-15Zr | 27.55 | −0.198 | 20.75 | 17.6 | 2.3 × 106 |
Ti-15Zr-5Cu | 3.13 | −0.121 | 27.88 | 9.1 | 1.8 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Gao, W.; Zhang, X.; Li, Y.; Zhang, S.; Ren, L.; Yang, K. Enhanced Corrosion Resistance and Biological Properties of Ultrafine-Grained Ti15Zr5Cu Alloy. Metals 2022, 12, 1144. https://doi.org/10.3390/met12071144
Wang H, Gao W, Zhang X, Li Y, Zhang S, Ren L, Yang K. Enhanced Corrosion Resistance and Biological Properties of Ultrafine-Grained Ti15Zr5Cu Alloy. Metals. 2022; 12(7):1144. https://doi.org/10.3390/met12071144
Chicago/Turabian StyleWang, Hai, Wenwei Gao, Xiyue Zhang, Yi Li, Shuyuan Zhang, Ling Ren, and Ke Yang. 2022. "Enhanced Corrosion Resistance and Biological Properties of Ultrafine-Grained Ti15Zr5Cu Alloy" Metals 12, no. 7: 1144. https://doi.org/10.3390/met12071144
APA StyleWang, H., Gao, W., Zhang, X., Li, Y., Zhang, S., Ren, L., & Yang, K. (2022). Enhanced Corrosion Resistance and Biological Properties of Ultrafine-Grained Ti15Zr5Cu Alloy. Metals, 12(7), 1144. https://doi.org/10.3390/met12071144