Oxidation Behavior of Intermetallic Phase and Its Contribution to the Oxidation Resistance in Fe-Cr-Zr Ferritic Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oxidation Tests in Air and in Liquid Pb-Bi Eutectic
2.3. Characterization
3. Results
3.1. Microstructure of Fe-Cr-Zr Alloy
3.2. Oxidation Behavior in Air
3.2.1. Structure and Morphology of Oxide Scale
3.2.2. Cross-Sectional Morphology
3.3. Oxidation Behavior in Stagnant Liquid Pb-Bi Eutectic
4. Discussion
4.1. Oxidation Behavior of Fe2Zr Phase
4.2. Oxidation Mechanism in Air
4.3. Oxidation Mechanism in Pb-Bi Eutectic
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klueh, R.; Nelson, A. Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater. 2007, 371, 37–52. [Google Scholar] [CrossRef]
- Guérin, Y.; Zinkle, S.J.; Was, G.S. Materials challenges for advanced nuclear energy systems. MRS Bull. 2009, 34, 10–19. [Google Scholar]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Chen, S.; Rong, L. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel. J. Nucl. Mater. 2015, 459, 13–19. [Google Scholar] [CrossRef]
- Agamennone, R.; Blum, W.; Gupta, C.; Chakravartty, J.K. Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels. Acta Mater. 2006, 54, 3003–3014. [Google Scholar] [CrossRef]
- Ghassemi-Armaki, H.; Chen, R.; Maruyama, K.; Yoshizawa, M.; Igarashi, M. Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels. Mater. Lett. 2009, 63, 2423–2425. [Google Scholar] [CrossRef]
- Chen, S.; Jin, X.; Rong, L. Microstructural Evolution and Mechanical Properties of Ultrafine-Grained Ferritic-Martensitic Steel During Thermal Aging. Met. Mater. Trans. A 2020, 51, 5154–5168. [Google Scholar] [CrossRef]
- Ukai, S.; Fujiwara, M. Perspective of ODS alloys application in nuclear environments. J. Nucl. Mater. 2002, 307, 749–757. [Google Scholar] [CrossRef]
- Hayashi, T.; Sarosi, P.; Schneibel, J.; Mills, M. Creep response and deformation processes in nanocluster-strengthened ferritic steels. Acta Mater. 2008, 56, 1407–1416. [Google Scholar] [CrossRef]
- Alinger, M.; Odette, G.; Hoelzer, D. On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys. Acta Mater. 2009, 57, 392–406. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kimura, Y.; Wei, F.; Mishima, Y. Design of Laves phase strengthened ferritic heat resisting steels in the Fe–Cr–Nb(–Ni) system. Mater. Sci. Eng. A 2002, 329, 249–254. [Google Scholar] [CrossRef]
- Morris, D.G.; Muñoz-Morris, M.A.; Requejo, L.M. New iron–aluminium alloy with thermally stable coherent intermetallic nanoprecipitates for enhanced high-temperature creep strength. Acta Mater. 2006, 54, 2335–2341. [Google Scholar] [CrossRef]
- Morris, D.G.; Gutierrez-Urrutia, I.; Muñoz-Morris, M.A. The high-temperature creep behaviour of an Fe–Al–Zr alloy strengthened by intermetallic precipitates. Scr. Mater. 2007, 57, 449–452. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, L.; Bei, H.; Busby, J.T. Thermodynamic modeling and experimental study of the Fe–Cr–Zr system. J. Nucl. Mater. 2013, 441, 190–202. [Google Scholar] [CrossRef]
- Jin, X.; Chen, S.; Rong, L. Effect of Fe2Zr phase on the mechanical properties and fracture behavior of Fe-Cr-W-Zr ferritic alloy. Mater. Sci. Eng. A 2018, 722, 173–181. [Google Scholar] [CrossRef]
- Tan, L.; Yang, Y.; Chen, T.; Sridharam, K.; He, L. Mechanical Properties and Radiation Resistance of Nanoprecipitates-Strengthened Advanced Ferritic Alloys; Oak Ridge National Lab.(ORNL): Oak Ridge, TN, USA, 2017. [Google Scholar] [CrossRef]
- Tan, L.; Yang, Y.; Sridharan, K. Accelerated Development of Zr-Containing New Generation Ferritic Steels for Advanced Nuclear Reactors; Oak Ridge National Lab.(ORNL): Oak Ridge, TN, USA, 2015. [Google Scholar] [CrossRef]
- Chen, S.; Rong, L. Oxide scale formation on ultrafine-grained ferritic-martensitic steel during pre-oxidation and its effect on the corrosion performance in stagnant liquid Pb-Bi eutectic. Acta Metall. Sin. 2021, 57, 989–999. [Google Scholar]
- Wang, J.; Lu, S.; Rong, L.; Li, D.; Li, Y. Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550 °C lead-bismuth eutectic. Corros. Sci. 2016, 111, 13–25. [Google Scholar] [CrossRef]
- Lu, Y.; Song, Y.; Chen, S.; Rong, L. Effects of Al and Si on mechanical properties and corrosion resistance in liquid Pb-Bi eutectic of 9Cr2WVTa steel. Acta Metall. Sin. 2016, 52, 298–306. [Google Scholar]
- Gong, X.; Short, M.P.; Auger, T.; Charalampopoulou, E.; Lambrinou, K. Environmental degradation of structural materials in liquid leadand lead-bismuth eutectic-cooled reactors. Prog. Mater. Sci. 2022, 126, 100920. [Google Scholar] [CrossRef]
- Martinelli, L.; Balbaud-Célérier, F.; Terlain, A.; Delpech, S.; Santarini, G.; Favergeon, J.; Moulin, G.; Tabarant, M.; Picard, G. Oxidation mechanism of a Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy (Part I). Corros. Sci. 2008, 50, 2523–2536. [Google Scholar] [CrossRef]
- Martinelli, L.; Balbaud-Célérier, F.; Terlain, A.; Bosonnet, S.; Picard, G.; Santarini, G. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470 °C (Part II). Corros. Sci. 2008, 50, 2537–2548. [Google Scholar] [CrossRef]
- Martinelli, L.; Balbaud-Célérier, F.; Picard, G.; Santarini, G. Oxidation mechanism of a Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy (Part III). Corros. Sci. 2008, 50, 2549–2559. [Google Scholar] [CrossRef]
- Proff, C.; Abolhassani, S.; Lemaignan, C. Oxidation behaviour of zirconium alloys and their precipitates—A mechanistic study. J. Nucl. Mater. 2013, 432, 222–238. [Google Scholar] [CrossRef]
- Young, D.J. High. Temperature Oxidation and Corrosion of Metals, 2nd ed.; Elsevier: Sydney, Australia, 2008; ISBN 9780081001011. [Google Scholar]
- Robino, C.V. Representation of mixed reactive gases on free energy (Ellinghan-Richardson) diagrams. Metall. Mater. Trans. B 1996, 27, 65–69. [Google Scholar] [CrossRef]
- Matsui, T. Vaporization study on M2Zr (M=Fe and Cr) by a mass-spectrometric method. J. Nucl. Mater. 1993, 201, 278–283. [Google Scholar] [CrossRef]
- Chen, S.; Jin, X.; Rong, L. Improvement in High Temperature Oxidation Resistance of 9 %Cr Ferritic–Martensitic Steel by Enhanced Diffusion of Mn. Oxid. Met. 2015, 85, 189–203. [Google Scholar] [CrossRef]
- Jin, X.; Chen, S.; Rong, L. Effects of Mn on the mechanical properties and high temperature oxidation of 9Cr2WVTa steel. J. Nucl. Mater. 2017, 494, 103–113. [Google Scholar] [CrossRef]
- Khanna, A.S.; Rodriguez, P.; Gnanamoorthy, J.B. Oxidation Kinetics, Breakaway oxidation, and inversion phenomenon in 9Cr―lMo steels. Oxid. Met. 1986, 26, 171–200. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, J.; Xue, Z.; Mao, X. Oxidation behavior of T92 steel with NiCoCrAlY coating by EB-PVD. Surf. Coat. Technol. 2014, 252, 179–185. [Google Scholar] [CrossRef]
- Doğan, N.; Holcomb, G.R.; Alman, D.E.; Jablonski, P.D. Steamside Oxidation Behavior of Experimental 9% Cr Steels, DOE/NETL-IR-2008-007; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, USA, 2008. [Google Scholar]
- Zhang, J. A review of steel corrosion by liquid lead and lead–bismuth. Corros. Sci. 2009, 51, 1207–1227. [Google Scholar] [CrossRef]
- Gnecco, F.; Ricci, E.; Bottino, C.; Passerone, A. Corrosion behaviour of steels in lead–bismuth at 823 K. J. Nucl. Mater. 2004, 335, 185–188. [Google Scholar] [CrossRef]
- Hosemann, P.; Thau, H.; Johnson, A.; Maloy, S.; Li, N. Corrosion of ODS steels in lead–bismuth eutectic. J. Nucl. Mater. 2008, 373, 246–253. [Google Scholar] [CrossRef]
- Mehrer, H. Diffusion in Solids; Springer: Berlin, Germany, 2007. [Google Scholar]
- Raman, R.K.S.; Gupta, R.K. Oxidation resistance of nanocrystalline vis-à-vis microcrystalline Fe–Cr alloys. Corros. Sci. 2009, 51, 316–321. [Google Scholar] [CrossRef]
- Chen, S.; Rong, L. Roles of Mn in the High-Temperature Air Oxidation of 9Cr Ferritic–Martensitic Steel After Severe Plastic Deformation. Oxid. Met. 2017, 89, 415–428. [Google Scholar] [CrossRef]
- Kumar, A.; Barda, H.; Klinger, L.; Finnis, M.; Lordi, V.; Rabkin, E.; Srolovitz, D.J. Anomalous diffusion along metal/ceramic interfaces. Nat. Commun. 2018, 9, 5251. [Google Scholar] [CrossRef]
- Amram, D.; Klinger, L.; Gazit, N.; Gluska, H.; Rabkin, E. Grain boundary grooving in thin films revisited: The role of interface diffusion. Acta Mater. 2014, 69, 386–396. [Google Scholar] [CrossRef]
Element | C | Cr | W | Zr | Fe |
---|---|---|---|---|---|
wt.% | 0.0039 | 8.96 | 2.01 | 9.86 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Rong, L. Oxidation Behavior of Intermetallic Phase and Its Contribution to the Oxidation Resistance in Fe-Cr-Zr Ferritic Alloy. Metals 2022, 12, 827. https://doi.org/10.3390/met12050827
Chen S, Rong L. Oxidation Behavior of Intermetallic Phase and Its Contribution to the Oxidation Resistance in Fe-Cr-Zr Ferritic Alloy. Metals. 2022; 12(5):827. https://doi.org/10.3390/met12050827
Chicago/Turabian StyleChen, Shenghu, and Lijian Rong. 2022. "Oxidation Behavior of Intermetallic Phase and Its Contribution to the Oxidation Resistance in Fe-Cr-Zr Ferritic Alloy" Metals 12, no. 5: 827. https://doi.org/10.3390/met12050827
APA StyleChen, S., & Rong, L. (2022). Oxidation Behavior of Intermetallic Phase and Its Contribution to the Oxidation Resistance in Fe-Cr-Zr Ferritic Alloy. Metals, 12(5), 827. https://doi.org/10.3390/met12050827