Effect of Water Vapor on the Microstructure of Al2O3 on the Free-Standing MCrAlY Alloy at 1100 °C
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Oxides Morphologies and Phase Composition
3.2. Oxidation Kinetics
3.3. Analysis of the Composition of the Oxide Scales
Element | Al | O | Y | Hf | Cr |
---|---|---|---|---|---|
1 | 41.92 | 57.82 | 0 | 0 | 0.25 |
2 | 0.73 | 61 | 2.48 | 35.77 | 0 |
3 | 0 | 58.11 | 9.32 | 32.55 | 0 |
4 | 0 | 65.49 | 0 | 34.50 | 0 |
5 | 0 | 63.04 | 0 | 36.95 | 0 |
3.4. Microstructure Analysis of Oxide Scale
4. Conclusions
- In the initial oxidation stage, the microstructure of alumina grains is affected by water vapor, which leads to an increase in the grain boundaries of the oxide scale. Consequently, it provides more channels for the diffusion of Hf and Y reactive elements. The mixed oxides of Hf and Y are only found on the inner side of the alumina scale generated in air. On the contrary, these mixed oxides can be found in the integrated alumina scale in an atmosphere containing water vapor.
- In the oxidation process in the air–water vapor atmosphere at 1100 °C, Cr diffuses uniformly at the grain boundaries of the alumina scale. Water vapor affects the diffusion process of Cr. However, in the oxidation process in the air, most of Cr is enriched on the outer equiaxed grain boundary of the alumina scale, and a small amount is distributed on the inner columnar grain boundary.
- The morphology of the alumina cross-section and the distribution of reactive elements depend on the oxidation atmosphere. In the air, the alumina scale has a two-layer structure consisting of outer equiaxed and inner columnar alumina grains. In the air–water vapor atmosphere, however, the alumina scale is composed of uniformly fine grains, and its stratification is not apparent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gil, A.; Shemet, V.; Vassen, R.; Subanovic, M.; Toscano, J.; Naumenko, D.; Singheiser, L.; Quadakkers, W. Effect of surface condition on the oxidation behaviour of MCrAlY coatings. Surf. Coat. Technol. 2006, 201, 3824–3828. [Google Scholar] [CrossRef]
- Keyvani, A.; Saremi, M.; Sohi, M.H.; Valefi, Z.; Yeganeh, M.; Kobayashi, A. Microstructural stability of nanostructured YSZ-alumina composite TBC compared to conventional YSZ coatings by means of oxidation and hot corrosion tests. J. Alloys Compd. 2014, 600, 151–158. [Google Scholar] [CrossRef]
- Song, P.; Naumenko, D.; Vassen, R.; Singheiser, L.; Quadakkers, W. Effect of oxygen content in NiCoCrAlY bondcoat on the lifetimes of EB-PVD and APS thermal barrier coatings. Surf. Coat. Technol. 2013, 221, 207–213. [Google Scholar] [CrossRef]
- Huang, T.; Lü, J.; Song, P.; Khan, A.; Chen, R.; Yi, J. Effect of Pt doping on oxide scale formation on yttria-dispersion FeCrAl alloy at 1200 °C. Corros. Sci. 2020, 168, 108580. [Google Scholar] [CrossRef]
- Cormier, J. Ni- and Co-Based Superalloys and their Coatings. Metals 2018, 8, 1055. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.; Song, X.; Lin, C.; Liu, Z.; Zheng, W.; Zeng, Y. Investigation of microstructure changes in Al2O3-YSZ coatings and YSZ coatings and their effect on thermal cycle life. J. Adv. Ceram. 2022, 11, 345–353. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiang, H.; Lu, X.; Feng, Z.; Li, Z. Theoretical prediction on mechanical and thermal properties of a promising thermal barrier material: Y4Al2O9. J. Adv. Ceram. 2015, 4, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.-F.; Chen, G.; Feng, Y.-Y.; Qi, Z.-X.; Wang, M.-Z.; Li, P.; Cheng, J.-L. Isothermal oxidation behavior of a new Re-free nickel-based single-crystal superalloy at 950 °C. Rare Met. 2016, 36, 617–621. [Google Scholar] [CrossRef]
- Pint, B.A. Optimization of Reactive-Element Additions to Improve Oxidation Performance of Alumina-Forming Alloys. J. Am. Ceram. Soc. 2003, 86, 686–695. [Google Scholar] [CrossRef]
- Naumenko, D.; Pint, B.A.; Quadakkers, W.J. Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer. Oxid. Met. 2016, 86, 1–43. [Google Scholar] [CrossRef]
- Guo, H.; Wang, D.; Peng, H.; Gong, S.; Xu, H. Effect of Sm, Gd, Yb, Sc and Nd as reactive elements on oxidation behaviour of β-NiAl at 1200 °C. Corros. Sci. 2014, 78, 369–377. [Google Scholar] [CrossRef]
- Duan, H.; Liu, Y.; Lin, T.; Zhang, H.; Huang, Z. Investigation on the High-Temperature Oxidation Resistance of Ni-(3~10) Ta and Ni-(3~10) Y Alloys. Metals 2019, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Pint, B.A.; More, K.L.; Wright, I.G. Effect of Quaternary Additions on the Oxidation Behavior of Hf-Doped NiAl. Oxid. Met. 2003, 59, 257–283. [Google Scholar] [CrossRef]
- Allam, I.M.; Whittle, D.P.; Stringer, J. The oxidation behavior of CoCrAI systems containing active element additions. Oxid. Met. 1978, 12, 35–66. [Google Scholar] [CrossRef]
- Li, C.; Song, P.; Khan, A.; Feng, J.; Chen, K.; Zang, J.; Xiong, X.; Lü, J.; Lu, J. Influence of water vapour on the HfO2 distribution within the oxide layer on CoNiCrAlHf alloys. J. Alloys Compd. 2018, 739, 690–699. [Google Scholar] [CrossRef]
- Chen, L.; Feng, J. Influence of HfO2 alloying effect on microstructure and thermal conductivity of HoTaO4 ceramics. J. Adv. Ceram. 2019, 8, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Milas, I.; Hinnemann, B.; Carter, E.A. Diffusion of Al, O, Pt, Hf, and Y atoms on α-Al2O3(0001): Implications for the role of alloying elements in thermal barrier coatings. J. Mater. Chem. 2011, 21, 1447–1456. [Google Scholar] [CrossRef]
- Munawar, A.U.; Schulz, U.; Shahid, M. Microstructure and lifetime of EB-PVD TBCs with Hf-doped bond coat and Gd-zirconate ceramic top coat on CMSX-4 substrates. Surf. Coat. Technol. 2016, 299, 104–112. [Google Scholar] [CrossRef]
- Young, D.J.; Zurek, J.; Singheiser, L.; Quadakkers, W.J. Temperature dependence of oxide scale formation on high-Cr ferritic steels in Ar–H2–H2O. Corros. Sci. 2011, 53, 2131–2141. [Google Scholar] [CrossRef]
- Sullivan, M.H.; Mumm, D.R. Transient stage oxidation of MCrAlY bond coat alloys in high temperature, high water vapor content environments. Surf. Coat. Technol. 2014, 258, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Guo, H.; Gong, S. High-temperature oxidation behavior of minor Hf doped NiAl alloy in dry and humid atmospheres. Corros. Sci. 2013, 75, 337–344. [Google Scholar] [CrossRef]
- Li, C.; Huang, T.; Song, P.; Yuan, X.; Feng, J.; Lü, K.; Li, Q.; Duan, W.; Lu, J. Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating. Corros. Sci. 2019, 163, 108240. [Google Scholar] [CrossRef]
- Hussain, N.; Qureshi, A.H.; Shahid, K.A.; Chughtai, N.A.; Khalid, F.A. High-temperature oxidation behavior of HASTELLOY C-4 in steam. Oxid. Met. 2004, 61, 355–364. [Google Scholar] [CrossRef]
- Lu, X.; Tian, S.; Yu, X.; Wang, C. Oxidation behavior of a single-crystal Ni-base superalloy in air at 900 and 1050 °C. Rare Met. 2011, 30 (Suppl. S1), 439–442. [Google Scholar] [CrossRef]
- Heuer, A. Oxygen and aluminum diffusion in α-Al2O3: How much do we really understand? J. Eur. Ceram. Soc. 2008, 28, 1495–1507. [Google Scholar] [CrossRef]
- Preis, W.; Sitte, W. Fast grain boundary diffusion and rate-limiting surface exchange reactions in polycrystalline materials. J. Appl. Phys. 2005, 97, 093504. [Google Scholar] [CrossRef]
- Wang, C.; Liang, Y.; Yang, S.; Yang, M.; Li, L.; Han, J.; Lu, Y.; Liu, X. Isothermal Sections of the Ni-Cr-Ta Ternary System at 1200 °C and 1300 °C. Metals 2019, 9, 770. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Naumenko, D.; Song, P.; Lu, J.; Quadakkers, W.J. Effect of Titanium Addition on Alumina Growth Mechanism on Yttria-Containing FeCrAl-Base Alloy. Oxid. Met. 2018, 90, 671–690. [Google Scholar] [CrossRef]
- Young, D.J.; Naumenko, D.; Niewolak, L.; Wessel, E.; Singheiser, L.; Quadakkers, W.J. Oxidation kinetics of Y-doped FeCrAl-alloys in low and high pO(2) gases. Mater. Corros.-Werkst. Und Korros. 2010, 61, 838–844. [Google Scholar] [CrossRef]
- Stringer, H.J. Oxide scale adhesion and impurity segregation at the scale/metal interface. Oxid. Met. 1992, 38, 323–345. [Google Scholar]
- Li, D.-S.; Chen, G.; Li, D.; Zheng, Q.; Gao, P.; Zhang, L.-L. Oxidation resistance of nickel-based superalloy Inconel 600 in air at different temperatures. Rare Met. 2018, 40, 1–6. [Google Scholar] [CrossRef]
- Quadakkers, W.J.; Naumenko, D.; Wessel, E.; Kochubey, V.; Singheiser, L.J. Growth Rates of Alumina Scales on Fe–Cr–Al Alloys. Oxid. Met. 2004, 61, 17–37. [Google Scholar] [CrossRef]
- Naumenko, D.; Gleeson, B.; Wessel, E.; Singheiser, L.; Quadakkers, W. Correlation between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy. Met. Mater. Trans. A 2007, 38, 2974–2983. [Google Scholar] [CrossRef]
- Götlind, H.; Liu, F.; Svensson, J.-E.; Halvarsson, M.; Johansson, L.-G. The Effect of Water Vapor on the Initial Stages of Oxidation of the FeCrAl Alloy Kanthal AF at 900 °C. Oxid. Met. 2007, 67, 251–266. [Google Scholar] [CrossRef]
- Hayashi, S.; Gleeson, B. Early-Stage Oxidation Behavior of Pt-Modified γ′-Ni3Al-Based Alloys with and without Hf Addition. Oxid. Met. 2008, 71, 5–19. [Google Scholar] [CrossRef]
Element | Ni | Cr | Al | Y | Hf | Ti | Fe | S |
---|---|---|---|---|---|---|---|---|
Content (wt.%) | 72.3 | 15.5 | 12 | 0.06 | 0.14 | 0.002 | <0.001 | <0.001 |
Element | Ni | Cr | Al |
---|---|---|---|
1 | 70.94 | 20.60 | 8.46 |
2 | 75.88 | 13.39 | 10.73 |
3 | 63.89 | 18.19 | 17.92 |
4 | 67.08 | 15.95 | 16.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Zheng, B.; Zhang, D.; Huang, T.; Li, C.; Li, Q.; Huang, W.; Zhang, L.; Song, P. Effect of Water Vapor on the Microstructure of Al2O3 on the Free-Standing MCrAlY Alloy at 1100 °C. Metals 2022, 12, 865. https://doi.org/10.3390/met12050865
Wu M, Zheng B, Zhang D, Huang T, Li C, Li Q, Huang W, Zhang L, Song P. Effect of Water Vapor on the Microstructure of Al2O3 on the Free-Standing MCrAlY Alloy at 1100 °C. Metals. 2022; 12(5):865. https://doi.org/10.3390/met12050865
Chicago/Turabian StyleWu, Minxuan, Biju Zheng, Defeng Zhang, Taihong Huang, Chao Li, Qing Li, Wenlang Huang, Luyang Zhang, and Peng Song. 2022. "Effect of Water Vapor on the Microstructure of Al2O3 on the Free-Standing MCrAlY Alloy at 1100 °C" Metals 12, no. 5: 865. https://doi.org/10.3390/met12050865
APA StyleWu, M., Zheng, B., Zhang, D., Huang, T., Li, C., Li, Q., Huang, W., Zhang, L., & Song, P. (2022). Effect of Water Vapor on the Microstructure of Al2O3 on the Free-Standing MCrAlY Alloy at 1100 °C. Metals, 12(5), 865. https://doi.org/10.3390/met12050865