Titanium Removal from Metallurgical-Grade Silicon Melts Using High-Basicity Index Slag and Carbon Dioxide Injection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Process
2.2. Measurements
3. Results and Discussion
3.1. Effect of Basicity Index of Slags on Ti-Removal Efficiency
3.2. Existence of Ti in Refining Slag
3.3. Discussion on Ti-Removal Procedure
4. Conclusions
- Ti in metallurgical-grade silicon can be removed using slags with high BIs and carbon dioxide injection. The removal rate of Ti first increases with the increasing BI of slags and then decreases for a BI of > 1.4. When using a slag with a BI of 1.4, 59% of Ti can be removed after 15 min of refining (Ti in silicon decreased from 0.0580 wt% to 0.0238 wt%). The Ti-bearing phase in the final slag contains 2.05 wt% of Ti;
- Under the conditions of this study, emulsification of the slag–silicon system during refining was observed, which can be restricted with an increased BI of the slag. In this case, the yield of silicon first decreased and then became steady for a BI exceeding 1.4;
- During refining, Ti was concentrated in silicon droplets as complex impurities with varied compositions, which were oxidized and wetted by slag at the slag–silicon interface, suggesting a Ti-removal procedure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciftja, A.; Engh, T.A.; Tangstad, M. Refining and Recycling of Silicon: A Review; NTNU: Trondheim, Norway, 2008; pp. 3–20. [Google Scholar]
- Hopkins, R.H.; Rohatgi, A. Impurity effects in silicon for high efficiency solar cells. J. Cryst. Growth 1986, 75, 67–79. [Google Scholar] [CrossRef]
- He, Y.; Ma, W.; Xing, A.; Hu, M.; Liu, S.; Yang, X.; Li, J.; Du, S.; Zhou, W. A review of the process on the purification of metallurgical grade silicon by solvent refining. Mater. Sci. Semicond. Process. 2022, 141, 106438. [Google Scholar] [CrossRef]
- Yuge, N.; Abe, M.; Hanazawa, K.; Baba, H.; Nakamura, N.; Kato, Y.; Sakaguchi, Y.; Hiwasa, S.; Aratani, F. Purification of metallurgical-grade silicon up to solar grade. Prog. Photovolt. Res. Appl. 2001, 9, 203–209. [Google Scholar] [CrossRef]
- Ciftja, A. Refining of solar cell silicon through metallurgical routes. JOM 2012, 64, 933–934. [Google Scholar] [CrossRef]
- Johnston, M.D.; Khajavi, L.T.; Li, M.; Sokhanvaran, S.; Barati, M. High-temperature refining of metallurgical-grade silicon: A review. JOM 2012, 64, 935–945. [Google Scholar] [CrossRef]
- Morita, K.; Miki, T. Thermodynamics of solar-grade-silicon refining. Intermetallics 2003, 11, 1111–1117. [Google Scholar] [CrossRef]
- Sun, Y.H.; Ye, Q.H.; Guo, C.J.; Chen, H.Y.; Lang, X.; David, F.; Luo, Q.W.; Yang, C.M. Purification of metallurgical-grade silicon via acid leaching, calcination and quenching before boron complexation. Hydrometallurgy 2013, 139, 64–72. [Google Scholar] [CrossRef]
- Su, H.J.; Zhang, J.; Liu, L.; Fu, H.Z. Preparation, microstructure and dislocation of solar-grade multicrystalline silicon by directional solidification from metallurgical-grade silicon. Trans. Nonferrous Met. Soc. China 2012, 22, 2548–2553. [Google Scholar] [CrossRef]
- Santos, I.C.; Goncalves, A.P.; Santos, C.S.; Almeida, M.; Afonso, M.H.; Cruz, M.J. Purification of metallurgical grade silicon by acid leaching. Hydrometallurgy 1990, 23, 237–246. [Google Scholar] [CrossRef]
- He, F.L.; Zheng, S.S.; Chen, C. The effect of calcium oxide addition on the removal of metal impurities from metallurgical-grade silicon by acid leaching. Metall. Mater. Trans. B 2012, 43, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Ban, B.; Li, J.; Bai, X.; He, Q.; Chen, J.; Dai, S. Mechanism of B removal by solvent refining of silicon in Al-Si melt with Ti addition. J. Alloy. Compd. 2016, 672, 489–496. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, J.; Wei, K.; Zhou, Q.; Ma, W. A novel method of purifying metallurgical-grade silicon using Mn as an impurity trapping agent. Metall. Mater. Trans. B 2022, 53, 152–160. [Google Scholar] [CrossRef]
- He, N.; Yang, D.; Xu, M.; Wu, J.; Wei, K.; Ma, W. Oxidation kinetics of impurities in metallurgical-grade silicon melt by O2 blowing refining process. Metall. Mater. Trans. B 2021, 52, 1830–1838. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Morita, K. Kinetic modeling of a silicon refining process in a moist hydrogen atmosphere. Metall. Mater. Trans. B 2018, 49, 1205–1212. [Google Scholar] [CrossRef]
- Li, S.; Deng, X.; Zhang, C.; Wen, J.; Wu, J.; Wei, K.; Ma, W. Leaching behavior of impurities in metallurgical grade silicon subjected to electromagnetic strengthening. J. Alloy. Compd. 2020, 831, 154888. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Y.; Shi, J.; Zhou, S.; Tang, W.; Chen, Z.; Ma, W.; Li, D.; Morita, K. Enhanced boron removal by CrMnFeNi-based high-entropy alloys during purification of silicon. Sep. Purif. Technol. 2021, 279, 119682. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Arimura, K.; Morita, K. Boron removal by titanium addition in solidification refining of silicon with Si-Al melt. Metall. Mater. Trans. B 2005, 36, 837–842. [Google Scholar] [CrossRef]
- Long, X.; He, S.P.; Xu, J.F.; Huo, X.L.; Wang, Q. Properties of high basicity mold fluxes for peritectic steel slab casting. J. Iron Steel Res. Int. 2012, 19, 39–45. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, Y.J.; He, S.P.; Mills, K.C.; Li, Z.S. Formation of TiN and Ti(C, N) in TiO2 containing, fluoride free, mould fluxes at high temperature. Ironmak. Steelmak. 2011, 38, 297–301. [Google Scholar] [CrossRef]
Fe | Al | Ca | Ti | P |
---|---|---|---|---|
0.531 | 0.462 | 0.073 | 0.058 | 0.006 |
No. | BI | Viscosity1673k, Pa.s | Tbr, K | CaO | SiO2 | CaF2 | Al2O3 | MgO | Na2O + BaO + Li2O | Cfree |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.2 | 0.428 | 1527 | 15 | 46 | 8 | 5 | 6.5 | 17.5 | 2 |
2 | 1.3 | 0.397 | 1512 | 15 | 44 | 8 | 5 | 6.5 | 19.5 | 2 |
3 | 1.4 | 0.314 | 1488 | 15 | 42 | 8 | 5 | 6.5 | 21.5 | 2 |
4 | 1.5 | 0.195 | 1481 | 15 | 40 | 8 | 5 | 6.5 | 23.5 | 2 |
Basicity index of slag | 1.2 | 1.3 | 1.4 | 1.5 |
---|---|---|---|---|
Overall quantity | 44 | 36 | 32 | 18 |
Diameter < 10 μm | 30 | 23 | 20 | 4 |
10 μm < diameter < 100 μm | 13 | 12 | 10 | 11 |
Diameter > 100 μm | 1 | 1 | 2 | 3 |
C | Si | Ti | Mg | Na | O | Al | Ca |
---|---|---|---|---|---|---|---|
9.84 | 22.11 | 2.05 | 10.07 | 4.95 | 38.33 | 2.65 | 6.32 |
Spot | C | Si | Ti | Mn | Fe | O | Al | Ca |
---|---|---|---|---|---|---|---|---|
1 | 10.51 | 44.78 | 2.48 | 1.63 | 40.60 | - | - | - |
2 | 10.93 | 55.27 | 1.75 | 1.36 | 30.69 | - | - | - |
3 | - | 76.99 | 0.51 | - | 19.32 | 2.60 | 0.25 | 0.33 |
Silicon matrix | - | 99.31 | - | - | 0.31 | - | 0.38 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, X.; Luo, W.; Lv, J.; Chen, F.; Li, X.; Long, S. Titanium Removal from Metallurgical-Grade Silicon Melts Using High-Basicity Index Slag and Carbon Dioxide Injection. Metals 2022, 12, 1004. https://doi.org/10.3390/met12061004
Long X, Luo W, Lv J, Chen F, Li X, Long S. Titanium Removal from Metallurgical-Grade Silicon Melts Using High-Basicity Index Slag and Carbon Dioxide Injection. Metals. 2022; 12(6):1004. https://doi.org/10.3390/met12061004
Chicago/Turabian StyleLong, Xiao, Wenbo Luo, Jun Lv, Falou Chen, Xiang Li, and Shaolei Long. 2022. "Titanium Removal from Metallurgical-Grade Silicon Melts Using High-Basicity Index Slag and Carbon Dioxide Injection" Metals 12, no. 6: 1004. https://doi.org/10.3390/met12061004
APA StyleLong, X., Luo, W., Lv, J., Chen, F., Li, X., & Long, S. (2022). Titanium Removal from Metallurgical-Grade Silicon Melts Using High-Basicity Index Slag and Carbon Dioxide Injection. Metals, 12(6), 1004. https://doi.org/10.3390/met12061004