Abrasion Power of Ti and Ni Diamond-Coated Coatings Deposited by Cold Spray
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Vieillard, C.; Brizmer, V.; Kadin, Y.; Morales-Espejel, G.E.; Gabelli, A. Benefits of Hybrid Bearings in Severe Conditions. SKF Evol. 2017, 3, 21–26. [Google Scholar]
- Morales-Espejel, G.E.; Gabelli, A.; Félix-Quiñonez, A. The SKF Generalized Bearing Life Model (GBLM) for Hybrid Bearings. SKF Group 2021. PUB BU/P9 19277 EN. September 2019. Available online: https://evolution.skf.com/the-skf-generalized-bearing-life-model-for-hybrid-bearings/ (accessed on 14 May 2022).
- Gabelli, A.; Morales-Espejel, G.E. A model for hybrid bearing life with surface and subsurface survival. Wear 2019, 422–423, 223–234. [Google Scholar] [CrossRef]
- Ghezzi, I.; Houara Komba, E.W.; Tonazzi, D.; Bouscharain, N.; Le Jeune, G.; Coudert, J.B.; Massi, F. Damage evolution and contact surfaces analysis of high-loaded oscillating hybrid bearings. Wear 2018, 406–407, 1–12. [Google Scholar] [CrossRef]
- Yin, S.; Lupoi, R.; Chen, C. Property Enhancement of Cold Sprayed Al-Diamond MMC Coating by Using Core-Shelled Diamond Reinforcements. Proc. Int. Therm. Spray Conf. 2019, 2019, 469–475. [Google Scholar]
- Lupoi, R.; Meyer, M.; Wits, W.W.; Yin, S. The Role of Particles Flow Characteristics in the Performance of Cold Spray Nozzles. CIRP Ann. 2020, 69, 189–192. [Google Scholar] [CrossRef]
- Lux, B.; Haubner, R. Diamond Deposition on Cutting Tools. Ceram. Int. 1996, 22, 347–351. [Google Scholar] [CrossRef]
- Morand, G.; Chevallier, P.; Bonilla-Gameros, L.; Turgeon, S.; Cloutier, M.; Da Silva Pires, M.; Sarkissian, A.; Tatoulian, M.; Houssiau, L.; Mantovani, D. On the Adhesion of Diamond-like Carbon Coatings Deposited by Low-pressure Plasma on 316L Stainless Steel. Surf. Interface Anal. 2021, 53, 658–671. [Google Scholar] [CrossRef]
- Yin, S.; Xie, Y.; Cizek, J.; Ekoi, E.J.; Hussain, T.; Dowling, D.P.; Lupoi, R. Advanced Diamond-Reinforced Metal Matrix Composites via Cold Spray: Properties and Deposition Mechanism. Compos. Part B Eng. 2017, 113, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.A.; Costa, F.M.; Fernandes, A.J.S.; Nazaré, M.H.; Silva, R.F. Influence of SiC particle addition on the nucleation density and adhesion strength of MPCVD diamond coatings on Si3N4 substrates. Diam. Relat. Mater. 2000, 9, 483–488. [Google Scholar] [CrossRef]
- Haubner, R.; Kalss, W. Diamond deposition on hardmetal substrates—Comparison of substrate pre-treatments and industrial applications. Int. J. Refract. Met. Hard Mater. 2010, 28, 475–483. [Google Scholar] [CrossRef]
- Zhang, C.; Ohmori, H.; Marinescu, I.; Kato, T. Grinding of Ceramic Coatings with Cast Iron Bond Diamond Wheels. A Comparative Study: ELID and Rotary Dresser. Int. J. Adv. Manuf. Technol. 2001, 18, 545–552. [Google Scholar] [CrossRef]
- Padmini, B.V.; Mathapati, M.; Niranjan, H.B.; Sampathkumaran, P.; Seetharamu, S.; Ramesh, M.R.; Mohan, N. High temperature tribological studies of cold sprayed nickel based alloy on low carbon steels. Mater. Today Proc. 2020, 27, 1951–1958. [Google Scholar] [CrossRef]
- Yin, S.; Cavaliere, P.; Aldwell, B.; Jenkins, R.; Liao, H.; Li, W.; Lupoi, R. Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications. Addit. Manuf. 2018, 21, 628–650. [Google Scholar] [CrossRef]
- Yin, S.; Cizek, J.; Yan, X.; Lupoi, R. Annealing Strategies for Enhancing Mechanical Properties of Additively Manufactured 316L Stainless Steel Deposited by Cold Spray. Surf. Coat. Technol. 2019, 370, 353–361. [Google Scholar] [CrossRef]
- Xie, Y.; Yin, S.; Chen, C.; Planche, M.-P.; Liao, H.; Lupoi, R. New Insights into the Coating/Substrate Interfacial Bonding Mechanism in Cold Spray. Scr. Mater. 2016, 125, 1–4. [Google Scholar] [CrossRef]
- Doubenskaia, M.; Latfulina, Y.S.; Samodurova, M.N. Cold Spray Deposition of Copper/Tungsten Composite Coatings. IOP Conf. Ser. Mater. Sci. Eng. 2020, 969, 012106. [Google Scholar] [CrossRef]
- Fang, L.; Xu, Y.; Gao, L.; Suo, X.; Gong, J.; Li, H. Cold-Sprayed Aluminum-Silica Composite Coatings Enhance Antiwear/Anticorrosion Performances of AZ31 Magnesium Alloy. Adv. Mater. Sci. Eng. 2018, 2018, 3215340. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Chen, C.; Suo, X.; Lupoi, R. Cold-Sprayed Metal Coatings with Nanostructure. Adv. Mater. Sci. Eng. 2018, 2018, 2804576. [Google Scholar] [CrossRef] [Green Version]
- Aldwell, B.; Yin, S.; McDonnell, K.A.; Trimble, D.; Hussain, T.; Lupoi, R. A Novel Method for Metal–Diamond Composite Coating Deposition with Cold Spray and Formation Mechanism. Scr. Mater. 2016, 115, 10–13. [Google Scholar] [CrossRef]
- ASTM-G99; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM Standard: West Conshohocken, PA, USA, 1999.
- ASTM G133; Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear 1. ASTM Standard: West Conshohocken, PA, USA, 2011; pp. 1–10. [CrossRef]
- Jana, A.; Dandapat, N.; Das, M.; Balla, V.K.; Chakraborty, S.; Saha, R.; Mallik, A.K. Severe Wear Behaviour of Alumina Balls Sliding against Diamond Ceramic Coatings. Bull. Mater. Sci. 2016, 39, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Yue, W.; Wang, C. Controllable Wear Behaviors of Silicon Nitride Sliding against Sintered Polycrystalline Diamond via Altering Humidity. J. Am. Ceram. Soc. 2018, 101, 2506–2515. [Google Scholar] [CrossRef]
- Li, Y.; Sha, X.; Yue, W.; Qin, W.; Wang, C. Effects of Tribochemical Reaction on Tribological Behaviors of Si3N4/Polycrystalline Diamond in Hydrochloric Acid. Int. J. Refract. Met. Hard Mater. 2019, 79, 197–203. [Google Scholar] [CrossRef]
- Pessolano Filos, I.; Sesana, R.; Di Biase, M.; Lupoi, R. New Abrasive Coatings: Abraded Volume Measurements in Ceramic Ball Production. J. Manuf. Mater. Process. 2021, 5, 81. [Google Scholar] [CrossRef]
Cast Iron 1 | C (%) | Si (%) | P (%) | Fe (%) | Ni (%) |
12.68 | 0.66 | 0.02 | 86.63 | 0.01 | |
Cast Iron 2 | C (%) | Si (%) | P (%) | Fe (%) | Ni (%) |
9.8 | 1.64 | 0.81 | 83.63 | 4.12 | |
Al Alloy | C (%) | O (%) | Al (%) | P (%) | Ni (%) |
36.03 | 5.23 | 56.41 | 0.54 | 1.79 |
Test | Substrate | TS * (mm/s) | p (bar) | Carrier Gas | Gas T (°C) | PFR ** (%) | SoD *** (mm) | Powder |
---|---|---|---|---|---|---|---|---|
305 | Cast iron | 2400 | 30 | N2 | 800 | 11 | 40 | 316L |
307 | Cast iron | 2400 | 30 | N2 | 850 | 11 | 40 | 304L |
309 | Cast iron | 1200 | 30 | N2 | 850 | 11 | 40 | 304 + Ti-Dia |
310 | Cast iron | 1200 | 30 | N2 | 850 | 11 | 40 | 304 + Ni-Dia |
315 | Aluminum | 1200 | 30 | N2 | 850 | 11 | 40 | 304 + Ni-Dia |
314 | Aluminum | 1200 | 30 | N2 | 850 | 11 | 40 | 304 + Ti-Dia |
Ra (µm) | Rq (µm) | Rp (µm) | Rv (µm) | Rz (µm) | ||
---|---|---|---|---|---|---|
Si3N4 ball | Before test | 0.0067 | 0.0096 | 0.0189 | 0.0796 | 0.0922 |
Ra (µm) | Rq (µm) | Rp (µm) | Rv (µm) | Rz (µm) | ||
---|---|---|---|---|---|---|
Al alloy-Ti coated | Right | 129 | 147 | 269 | 215 | 484 |
Left | 100 | 123 | 196 | 271 | 467 | |
Top | 135 | 159 | 298 | 299 | 597 | |
Average | 121 | 143 | 254 | 261 | 516 | |
Al alloy-Ni coated | Right | 63 | 72 | 125 | 132 | 257 |
Left | 33 | 40 | 86 | 73 | 159 | |
Top | 50 | 65 | 114 | 150 | 264 | |
Average | 48 | 59 | 108 | 118 | 226 |
Test Number | Coating Type | Rt (mm) | FN (N) | n (rpm) | Local Linear Speed (mm/s) | L (m) |
---|---|---|---|---|---|---|
Test 1 | Ni Dia | 7 | 5 | 20 | 14.66 | 150 |
Test 2 | Ni Dia | 11 | 5 | 20 | 23.04 | 150 |
Test 3 | Ni Dia | 14 | 5 | 20 | 29.32 | 150 |
Test 4 | Ti Dia | 7 | 5 | 20 | 14.66 | 150 |
Test 5 | Ti Dia | 11 | 5 | 20 | 23.04 | 150 |
Test 6 | Ti Dia | 14 | 5 | 20 | 29.32 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sesana, R.; Lupoi, R.; Pessolano Filos, I.; Yu, P.; Rizzo, S. Abrasion Power of Ti and Ni Diamond-Coated Coatings Deposited by Cold Spray. Metals 2022, 12, 1197. https://doi.org/10.3390/met12071197
Sesana R, Lupoi R, Pessolano Filos I, Yu P, Rizzo S. Abrasion Power of Ti and Ni Diamond-Coated Coatings Deposited by Cold Spray. Metals. 2022; 12(7):1197. https://doi.org/10.3390/met12071197
Chicago/Turabian StyleSesana, Raffaella, Rocco Lupoi, Irene Pessolano Filos, Pengfei Yu, and Sebastiano Rizzo. 2022. "Abrasion Power of Ti and Ni Diamond-Coated Coatings Deposited by Cold Spray" Metals 12, no. 7: 1197. https://doi.org/10.3390/met12071197
APA StyleSesana, R., Lupoi, R., Pessolano Filos, I., Yu, P., & Rizzo, S. (2022). Abrasion Power of Ti and Ni Diamond-Coated Coatings Deposited by Cold Spray. Metals, 12(7), 1197. https://doi.org/10.3390/met12071197