Twin Boundary Induced Grain Coarsening in Friction Stir Welding of Fine- and Ultra-Fine-Grained Commercially Pure Titanium Base Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Friction Stir Welding Parameters
2.3. Microstructure Characterization
3. Results and Discussion
3.1. Base Metal Microstructure
3.2. Stir Zone Microstructure
4. Discussion
4.1. Evolution of Grain Boundary Character Distribution: Base Metal to Stir Zone
4.2. Feasiliblity of Friction Stir Welding on Fine-Grained and Ultra-Fine-Grained CP-Ti Material
5. Conclusions
- Differences in grain boundary character distribution were observed in fine-grained and ultra-fine-grained titanium base metal owing to the different rolling temperatures of cold and cryogenic rolling.
- Observation of differences in microstructural evolution in stir zones were due to grain boundary character distribution differences in each base metal, primarily the fraction of twin boundaries.
- The grain coarsening in the stir zone of ultra-fine-grained commercially pure titanium was induced by a high fraction of twin boundaries and was not able to maintain ultra-fine-grained structures and characters.
- The more the fraction of twin boundaries in base metal, the more the dynamic recrystallization accelerated and subsequently coarsened, and equiaxed grains were formed in the stir zone
- The formation of TBs should be carefully controlled when considering the welding and joining of ultra-fine-grained commercially pure titanium for any application.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
BM | base metal |
CP-Ti | commercially pure titanium |
DRV | dynamic recovery |
DRX | dynamic recrystallization |
EBSD | electron backscattered diffraction |
FSW | friction stir welding |
GBCD | grain boundary character distribution |
HAB | high angle boundary |
HCP | hexagonal close-packed |
IPF | inverse pole figure |
KAM | kernel average misorientation |
LAB | low angle boundary |
ND | normal direction |
RD | rolling direction |
SFE | stacking fault energy |
SZ | stir zone |
TB | twin boundary |
TD | transverse direction |
Ti | titanium |
WD | welding direction |
Appendix A
References
- Kim, J.D.; Jin, E.G.; Murugan, S.P.; Park, Y.D. Recent Advances in Friction-Stir Welding Process and Microstructural Investigation of Friction Stir Welded Pure Titanium. J. Weld. Join. 2017, 35, 6–15. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y. Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. JOM 2016, 68, 1216–1226. [Google Scholar] [CrossRef]
- Gholinia, A.; Humphreys, F.J.; Prangnell, P.B. Production of Ultra-Fine Grain Microstructures in Al-Mg Alloys by Coventional Rolling. Acta Mater. 2002, 50, 4461–4476. [Google Scholar] [CrossRef]
- Ko, Y.G.; Shin, D.H.; Park, K.T.; Lee, C.S. An Analysis of the Strain Hardening Behavior of Ultra-Fine Grain Pure Titanium. Scr. Mater. 2006, 54, 1785–1789. [Google Scholar] [CrossRef]
- Sanosh, K.P.; Balakrishnan, A.; Francis, L.; Kim, T.N. Vickers and Knoop Micro-Hardness Behavior of Coarse-and Ultrafine-Grained Titanium. J. Mater. Sci. Technol. 2010, 26, 904–907. [Google Scholar] [CrossRef]
- Momeni, A.; Abbasi, S.M. Repetitive Thermomechanical Processing towards Ultra Fine Grain Structure in 301, 304 and 304L Stainless Steels. J. Mater. Sci. Technol. 2011, 27, 338–343. [Google Scholar] [CrossRef]
- Bézi, Z.; Krállics, G.; El-Tahawy, M.; Pekker, P.; Gubicza, J. Processing of Ultrafine-Grained Titanium with High Strength and Good Ductility by a Combination of Multiple Forging and Rolling. Mater. Sci. Eng. A 2017, 688, 210–217. [Google Scholar] [CrossRef]
- Kim, J.D.; Murugan, S.P.; Kim, J.W.; Chun, C.K.; Kim, S.W.; Hong, J.K.; Choi, S.W.; Ji, C.W.; Kim, J.U.; Park, Y.D. Do α/β Phase Transformation and Dynamic Recrystallization Induced Microstructure Development in Fine-Grained Ti-6Al-4V Friction Stir Weld. Mater. Charact. 2021, 178, 111300. [Google Scholar] [CrossRef]
- Gao, M.; Zeng, X.; Hu, Q.; Yan, J. Laser-TIG Hybrid Welding of Ultra-Fine Grained Steel. J. Mater. Process. Technol. 2009, 209, 785–791. [Google Scholar] [CrossRef]
- Tian, Z.; Peng, Y. Welding of Ultra-Fine Grained Steels. In Ultra-Fine Grained Steels; Springer: Berlin, Heidelberg, Germany, 2009; pp. 494–566. ISBN 978-3-540-77230-9. [Google Scholar] [CrossRef]
- Arora, K.S.; Pandey, S.; Schaper, M.; Kumar, R. Microstructure Evolution during Friction Stir Welding of Aluminum Alloy AA2219. J. Mater. Sci. Technol. 2010, 26, 747–753. [Google Scholar] [CrossRef]
- Mironov, S.; Sato, Y.S.; Kokawa, H. Friction-Stir Welding and Processing of Ti-6Al-4V Titanium Alloy: A Review. J. Mater. Sci. Technol. 2018, 34, 58–72. [Google Scholar] [CrossRef]
- Fujii, H.; Ueji, R.; Takada, Y.; Kitahara, H.; Tsuji, N.; Nakata, K.; Nogi, K. Friction Stir Welding of Ultrafine Grained Interstitial Free Steels. Mater. Trans. 2006, 47, 239–242. [Google Scholar] [CrossRef]
- Ueji, R.; Fujii, H.; Cui, L.; Nishioka, A.; Kunishige, K.; Nogi, K. Friction Stir Welding of Ultrafine Grained Plain Low-Carbon Steel Formed by the Martensite Process. Mater. Sci. Eng. A 2006, 423, 324–330. [Google Scholar] [CrossRef]
- Malopheyev, S.; Mironov, S.; Kulitskiy, V.; Kaibyshev, R. Friction-Stir Welding of Ultra-Fine Grained Sheets of Al-Mg-Sc-Zr Alloy. Mater. Sci. Eng. A 2015, 624, 132–139. [Google Scholar] [CrossRef]
- Sabooni, S.; Karimzadeh, F.; Enayati, M.H.; Ngan, A.H.W. Recrystallisation Mechanism during Friction Stir Welding of Ultrafine- and Coarse-Grained AISI 304L Stainless Steel. Sci. Technol. Weld. Join. 2016, 21, 287–294. [Google Scholar] [CrossRef]
- Wang, Y.F.; An, J.; Yin, K.; Wang, M.S.; Li, Y.S.; Huang, C.X. Ultrafine-Grained Microstructure and Improved Mechanical Behaviors of Friction Stir Welded Cu and Cu-30Zn Joints. Acta Met. Sin. (Engl. Lett.) 2018, 31, 878–886. [Google Scholar] [CrossRef]
- Orłowska, M.; Brynk, T.; Hütter, A.; Goliński, J.; Enzinger, N.; Olejnik, L.; Lewandowska, M. Similar and Dissimilar Welds of Ultrafine Grained Aluminium Obtained by Friction Stir Welding. Mater. Sci. Eng. A 2020, 777, 139076. [Google Scholar] [CrossRef]
- Orłowska, M.; Olejnik, L.; Campanella, D.; Buffa, G.; Morawiński, Ł.; Fratini, L.; Lewandowska, M. Application of Linear Friction Welding for Joining Ultrafine Grained Aluminium. J. Manuf. Process. 2020, 56, 540–549. [Google Scholar] [CrossRef]
- Zherebtsov, S.V.; Dyakonov, G.S.; Salem, A.A.; Sokolenko, V.I.; Salishchev, G.A.; Semiatin, S.L. Formation of Nanostructures in Commercial-Purity Titanium via Cryorolling. Acta Mater. 2013, 61, 1167–1178. [Google Scholar] [CrossRef]
- Won, J.W.; Lee, T.; Hong, S.G.; Lee, Y.; Lee, J.H.; Lee, C.S. Role of Deformation Twins in Static Recrystallization Kinetics of High-Purity Alpha Titanium. Metall. Mater. Int. 2016, 22, 1041–1048. [Google Scholar] [CrossRef]
- Won, J.W.; Lee, J.H.; Jeong, J.S.; Choi, S.W.; Lee, D.J.; Hong, J.K.; Hyun, Y.T. High Strength and Ductility of Pure Titanium via Twin-Structure Control Using Cryogenic Deformation. Scr. Mater. 2020, 178, 94–98. [Google Scholar] [CrossRef]
- Choi, S.W.; Jeong, J.S.; Won, J.W.; Hong, J.K.; Choi, Y.S. Grade-4 Commercially Pure Titanium with Ultrahigh Strength Achieved by Twinning-Induced Grain Refinement through Cryogenic Deformation. J. Mater. Sci. Technol. 2021, 66, 193–201. [Google Scholar] [CrossRef]
- Kim, G.; Shams, S.A.A.; Kim, J.N.; Won, J.W.; Choi, S.W.; Hong, J.K.; Lee, C.S. Enhancing Low-Cycle Fatigue Life of Commercially-Pure Ti by Deformation at Cryogenic Temperature. Mater. Sci. Eng. A 2021, 803, 140698. [Google Scholar] [CrossRef]
- Choi, S.W.; Li, C.L.; Won, J.W.; Yeom, J.T.; Choi, Y.S.; Hong, J.K. Deformation Heterogeneity and Its Effect on Recrystallization Behavior in Commercially Pure Titanium: Comparative Study on Initial Microstructures. Mater. Sci. Eng. A 2019, 764, 138211. [Google Scholar] [CrossRef]
- Won, J.W.; Choi, S.W.; Yeom, J.T.; Hyun, Y.T.; Lee, C.S.; Park, S.H. Anisotropic Twinning and Slip Behaviors and Their Relative Activities in Rolled Alpha-Phase Titanium. Mater. Sci. Eng. A 2017, 698, 54–62. [Google Scholar] [CrossRef]
- Kelly, M.N.; Glowinski, K.; Nuhfer, N.T.; Rohrer, G.S. The Five Parameter Grain Boundary Character Distribution of α-Ti Determined from Three-Dimensional Orientation Data. Acta Mater. 2016, 111, 22–30. [Google Scholar] [CrossRef]
- Mironov, S.; Sato, Y.S.; Kokawa, H. Development of Grain Structure during Friction Stir Welding of Pure Titanium. Acta Mater. 2009, 57, 4519–4528. [Google Scholar] [CrossRef]
- Svensson, L.E.; Karlsson, L.; Larsson, H.; Karlsson, B.; Fazzini, M.; Karlsson, J. Microstructure and Mechanical Properties of Friction Stir Welded Aluminium Alloys with Special Reference to AA 5083 and AA 6082. Sci. Technol. Weld. Join. 2000, 5, 285–296. [Google Scholar] [CrossRef]
- Asadi, E.; Asle Zaeem, M. The Anisotropy of Hexagonal Close-Packed and Liquid Interface Free Energy Using Molecular Dynamics Simulations Based on Modified Embedded-Atom Method. Acta Mater. 2016, 107, 337–344. [Google Scholar] [CrossRef]
- Xu, N.; Song, Q.; Bao, Y.; Jiang, Y.; Shen, J.; Cao, X. Twinning-Induced Mechanical Properties’ Modification of CP-Ti by Friction Stir Welding Associated with Simultaneous Backward Cooling. Sci. Technol. Weld. Join. 2017, 22, 610–616. [Google Scholar] [CrossRef]
- Bozzolo, N.; Dewobroto, N.; Wenk, H.R.; Wagner, F. Microstructure and Microtexture of Highly Cold-Rolled Commercially Pure Titanium. J. Mater. Sci. 2007, 42, 2405–2416. [Google Scholar] [CrossRef]
- Chao, Q.; Beladi, H.; Sabirov, I.; Hodgson, P.D. Deformation Behaviour of a Commercial Pure Titanium Alloy during Hot Compression Testing. Mater. Sci. Forum 2014, 773–774, 281–286. [Google Scholar] [CrossRef]
- Nandan, R.; Lienert, T.J.; DebRoy, T. Toward Reliable Calculations of Heat and Plastic Flow during Friction Stir Welding of Ti-6Al-4V Alloy. Int. J. Mater. Res. 2008, 99, 434–444. [Google Scholar] [CrossRef]
- Ahn, S.H.; Chun, Y.B.; Yu, S.H.; Kim, K.H.; Hwang, S.K. Microstructural Refinement and Deformation Mode of Ti under Cryogenic Channel Die Compression. Mater. Sci. Eng. A 2010, 528, 165–171. [Google Scholar] [CrossRef]
- Brons, J.G.; Thompson, G.B. A Comparison of Grain Boundary Evolution during Grain Growth in Fcc Metals. Acta Mater. 2013, 61, 3936–3944. [Google Scholar] [CrossRef]
- Luo, X.M.; Zhu, X.F.; Zhang, G.P. Nanotwin-Assisted Grain Growth in Nanocrystalline Gold Films under Cyclic Loading. Nat. Commun. 2014, 5, 3021. [Google Scholar] [CrossRef]
- Prasad, K.E.; Ramesh, K.T. In-Situ Observations and Quantification of Twin Boundary Mobility in Polycrystalline Magnesium. Mater. Sci. Eng. A 2014, 617, 121–126. [Google Scholar] [CrossRef]
- Molodov, D.A.; Konijnenberg, P.J. Grain Boundary and Grain Structure Control through Application of a High Magnetic Field. Scr. Mater. 2006, 54, 977–981. [Google Scholar] [CrossRef]
- Wang, Y.; He, W.; Liu, N.; Chapuis, A.; Luan, B.; Liu, Q. Effect of Pre-Annealing Deformation on the Recrystallized Texture and Grain Boundary Misorientation in Commercial Pure Titanium. Mater. Charact. 2018, 136, 1–11. [Google Scholar] [CrossRef]
- Frydrych, K.; Kowalczyk-Gajewska, K. Microstructure Evolution in Cold-Rolled Pure Titanium: Modeling by the Three-Scale Crystal Plasticity Approach Accounting for Twinning. Metall. Mater. Trans. A 2018, 49, 3610–3623. [Google Scholar] [CrossRef]
- Zherebtsov, S.V.; Dyakonov, G.S.; Salem, A.A.; Malysheva, S.P.; Salishchev, G.A.; Semiatin, S.L. Evolution of Grain and Subgrain Structure during Cold Rolling of Commercial-Purity Titanium. Mater. Sci. Eng. A 2011, 528, 3474–3479. [Google Scholar] [CrossRef]
Specific Angle | 30 ± 5° | 60 ± 5° | 75 ± 5° | 90 ± 5° |
---|---|---|---|---|
Featured high-angle boundary character | {11-22} compression twin <-1100> tensile twin | {1122} compression twin <-12-10> compression twin <11-20> α/α boundary <-10-7 17 3> α/α boundary <-10 5 5 -3> α/α boundary <-1100> compression twin | - | {101-2} tensile twin <7-17 10 0> α/α boundary <-12-10> tensile twin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-D.; Murugan, S.P.; Choi, S.-W.; Sato, Y.S.; Hong, J.-K.; Ji, C.; Kwak, C.-S.; Park, Y.-D. Twin Boundary Induced Grain Coarsening in Friction Stir Welding of Fine- and Ultra-Fine-Grained Commercially Pure Titanium Base Metals. Metals 2022, 12, 1361. https://doi.org/10.3390/met12081361
Kim J-D, Murugan SP, Choi S-W, Sato YS, Hong J-K, Ji C, Kwak C-S, Park Y-D. Twin Boundary Induced Grain Coarsening in Friction Stir Welding of Fine- and Ultra-Fine-Grained Commercially Pure Titanium Base Metals. Metals. 2022; 12(8):1361. https://doi.org/10.3390/met12081361
Chicago/Turabian StyleKim, Jae-Deuk, Siva Prasad Murugan, Seong-Woo Choi, Yutaka S. Sato, Jae-Keun Hong, Changwook Ji, Chang-Sub Kwak, and Yeong-Do Park. 2022. "Twin Boundary Induced Grain Coarsening in Friction Stir Welding of Fine- and Ultra-Fine-Grained Commercially Pure Titanium Base Metals" Metals 12, no. 8: 1361. https://doi.org/10.3390/met12081361
APA StyleKim, J. -D., Murugan, S. P., Choi, S. -W., Sato, Y. S., Hong, J. -K., Ji, C., Kwak, C. -S., & Park, Y. -D. (2022). Twin Boundary Induced Grain Coarsening in Friction Stir Welding of Fine- and Ultra-Fine-Grained Commercially Pure Titanium Base Metals. Metals, 12(8), 1361. https://doi.org/10.3390/met12081361