Cause Analysis and Solution of Premature Fracture of Suspension Rod in Metro Gear Box
Abstract
:1. Introduction
2. Materials and Processing Methods
3. Result Analysis
3.1. Macroscopic Observation
3.2. SEM Images of Fracture Surfaces
3.3. Metallography Analysis
3.4. Chemical Composition Test Results
3.5. Mechanical Performance Testing
4. Finite Element Analysis
4.1. Model Simplification
- The rated torque of the motor is: 955 Nm;
- The maximum traction (braking) torque of the motor is: 1361 Nm;
- Short-circuit torque of the motor is: 8000 Nm;
- Transmission ratio : 7.69;
- is the distance from the boom centerline to the axle centerline, 421.68 mm;
- Then the torque balance gives ;
- At rated operation: = 19.68 kN;
- At start-up: = 28.05 kN.
- is the mass of the case, 131 kg;
- + is the pinion weight and half coupling mass, 20.6 kg;
- is the boom mass, 15.7 kg;
- Maximum vertical vibration acceleration at the boom, ±15 g;
- Vibration force: = 11.77 kN.
- Rated working condition: = 31.45 kN;
- Start-up condition: = 39.82 kN.
4.2. Calculation Results
4.3. Fatigue Strength Assessment Methods
5. Quantitative Fracture Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruobing, K.; Zhigang, K. Structural Strength Analysis of High Current Connector for Rail Transit. J. Phys. Conf. Ser. 2021, 2095, 012013. [Google Scholar]
- Mejuto Diego, G. Theorizing nation-building through high-speed rail development: Hegemony and space in the Basque Country, Spain. Environ. Plan. A Econ. Space 2022, 54, 554–571. [Google Scholar] [CrossRef]
- Wangang, Z.; Wei, S.; Hao, W. Vibration and Stress Response of High-Speed Train Gearboxes under Different Excitations. Appl. Sci. 2022, 12, 712. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Wu, Z.; Yan, K.; Shao, H.; Cheng, J. High-accuracy gearbox health state recognition based on graph sparse random vector functional link network. Reliab. Eng. Syst. Saf. 2022, 218, 108187. [Google Scholar] [CrossRef]
- Feng, Y.; Xiaochun, Z.; Chunyu, L.; Jun, L. Analysis and Research on Fracture Cause of Fixed Shaft of Torsion Arm of Wind Turbine Gearbox. J. Phys. Conf. Ser. 2021, 2133, 012039. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, J.; Yao, D.; Wang, J.; Bai, Y. Subway Gearbox Fault Diagnosis Algorithm Based on Adaptive Spline Impact Suppression. Entropy 2021, 23, 660. [Google Scholar] [CrossRef] [PubMed]
- Curà, F.; Mura, A.; Rosso, C. Effect of rim and web interaction on crack propagation paths in gears by means of XFEM technique. Fatigue Fract. Eng. Mater. Struct. 2015, 10, 1237–1245. [Google Scholar] [CrossRef]
- Meneghetti, G.; Dengo, C.; Lo Conte, F. Bending fatigue design of case-hardened gears based on test specimens. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 11, 1953–1969. [Google Scholar] [CrossRef]
- Conrado, E.; Gorla, C.; Davoli, P.; Boniardi, M. A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications. Eng. Fail. Anal. 2017, 78, 41–54. [Google Scholar] [CrossRef]
- Shukla, A.; Rai, P. Finite element based modelling and analysis of dragline boom structure. J. Mines Met. Fuels 2020, 68, 50–56. [Google Scholar]
- Zalaznik, A.; Nagode, M. Experimental, theoretical and numerical fatigue damage estimation using a temperature modified dirlik method. Eng. Struct. 2015, 96, 56–65. [Google Scholar] [CrossRef]
- Irisarri, A.M.; Pelayo, A. Failure analysis of an open die forging drop hammer. Eng. Fail. Anal. 2009, 16, 1727–1733. [Google Scholar] [CrossRef]
- Lu, Y.; Ripplinger, K.; Huang, X.J.; Mao, Y.; Detwiler, D. A new fatigue life model for thermally-induced cracking in H13 steel dies for die casting. J. Mater. Process. Technol. 2019, 271, 444–454. [Google Scholar] [CrossRef]
- Mellouli, D.; Haddar, N.; Köster, A.; Ayedi, H.F. Thermal fatigue failure of brass die-casting dies. Eng. Fail. Anal. 2012, 20, 137–146. [Google Scholar] [CrossRef]
- Cui, Z.; Bhattacharya, S.; Green, D.E.; Alpas, A.T. Mechanisms of die wear and wear-induced damage at the trimmed edge of high strength steel sheets. Wear 2019, 427, 1635–1645. [Google Scholar] [CrossRef]
- General Administration of Quality Supervision; Inspection and Quarantine of the People’s Republic of China. GB/T 10561-2005 Determination of the Content of Non-Metallic Inclusions in Steel Standard Rating Chart Microscopic Test Method, 1st ed.; China Standard Publishing House: Beijing, China, 2015. [Google Scholar]
- China Iron and Steel Industry Association. GB/T 228.1-2021 Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature, 1st ed.; China Standard Publishing House: Beijing, China, 2021. [Google Scholar]
- China Iron and Steel Industry Association. GB/T 231.1-2018 Metallic Materials—Brinell Hardness Test—Part 1: Test Method, 1st ed.; China Standard Publishing House: Beijing, China, 2018. [Google Scholar]
- China Iron and Steel Industry Association. GB/T 229-2020 Metallic Materials—Charpy Pendulum Impact Test Method, 1st ed.; China Standard Publishing House: Beijing, China, 2020. [Google Scholar]
- Statharas, D.; Sideris, J.; Chicinas, I.; Medrea, C. Microscopic examination of the fracture surfaces of a cold working die due to premature failure. Eng. Fail. Anal. 2011, 18, 759–765. [Google Scholar] [CrossRef]
- International Union of Railways. UIC 615-4 Motive Power Units-Bogies and Running GearBoige Frame Structure Strength Tests, 1st ed.; International Union of Railways: Paris, France, 2003. [Google Scholar]
- China Railway Bureau. TB/T 3548-2019 General Rules for Strength Design and Test Qualification Specifications for Rolling Stock, 1st ed.; China Standards Publishing House: Beijing, China, 2019. [Google Scholar]
- Institute of Metals and Chemistry; Ministry of Railways Scientific Research Institute. The p-s-N Curves and Goodman’s Atlas for Materials Commonly Used in Railways, 1st ed.; Research Report of the Academy of Railway Sciences: Beijing, China, 1999. [Google Scholar]
- Liao, Z.; Wenfeng, Z.; Hai, Y. Application of quantitative fracture analysis in assessing the fatigue life of components. Mater. Eng. 2000, 4, 45–48. [Google Scholar]
- Xinling, L.; Weifang, Z.; Chunhu, T. Comparison of fatigue life models for quantitative analysis of different fractures. Mech. Eng. Mater. 2008, 5, 4–6. [Google Scholar]
- Xin, W.; Chunling, X.; Xing, C.; Dianyin, H.; Bo, H.; Rengao, H.; Yuanxing, G.; Zhihui, T. Effect of cold expansion on high-temperature low-cycle fatigue performance of the nickel-based superalloy hole structure. Int. J. Fatigue 2021, 151, 106377. [Google Scholar]
Yield Strength/MPa | Tensile Strength/MPa | Elongation/% | Area Reduction in Tensile Test/% | Impact Value/J/cm2 | Hardness/HB |
---|---|---|---|---|---|
≥490 | ≥690 | ≥17 | ≥45 | ≥78 | 201~269 |
Ingredient | C | Si | Mn | P | S |
---|---|---|---|---|---|
Composition | 0.462 | 0.230 | 0.667 | 0.006 | 0.001 |
Specimen | Tensile Test | Brinell Hardness | Impact Value (J) | ||||
---|---|---|---|---|---|---|---|
Yield Strength (MPa) | Tensile Strength (MPa) | Axial Elongation (%) | Area Reduction in Tensile Test (%) | Surface Decarburization | Core Hardness | ||
AVG | 476 | 753.3 | 22.8 | 67.3 | 167 | 230 | 83.3 |
STD | 7.21 | 6.66 | 1.44 | 0.58 | 7.94 | 4.00 | 4.62 |
No. | Length from the Origin of the Fracture an (mm) | Average Distance between Beach Marks (mm) | Ni |
---|---|---|---|
1 | 0~24 | 0.10 | 240 |
2 | 24~47 | 0.10 | 230 |
3 | 47~82 | 0.12 | 292 |
4 | 82~90 | 0.14 | 57 |
5 | - | - | ΣNn = 819 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Xu, Z.; Liu, H.; Liu, X. Cause Analysis and Solution of Premature Fracture of Suspension Rod in Metro Gear Box. Metals 2022, 12, 1426. https://doi.org/10.3390/met12091426
Liu W, Xu Z, Liu H, Liu X. Cause Analysis and Solution of Premature Fracture of Suspension Rod in Metro Gear Box. Metals. 2022; 12(9):1426. https://doi.org/10.3390/met12091426
Chicago/Turabian StyleLiu, Wenming, Zhiqiang Xu, Hongmei Liu, and Xuedong Liu. 2022. "Cause Analysis and Solution of Premature Fracture of Suspension Rod in Metro Gear Box" Metals 12, no. 9: 1426. https://doi.org/10.3390/met12091426
APA StyleLiu, W., Xu, Z., Liu, H., & Liu, X. (2022). Cause Analysis and Solution of Premature Fracture of Suspension Rod in Metro Gear Box. Metals, 12(9), 1426. https://doi.org/10.3390/met12091426