Effect of Cladding Current on Microstructure and Wear Resistance of High-Entropy Powder-Cored Wire Coating
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Phase Constitution
3.3. Mechanical Properties
3.3.1. Microhardness
3.3.2. Abrasion Resistance
- (1)
- where V is the wear volume, and ΣW is the accumulated work done by friction;
- (2)
- where Q is the material wear volume, K is the friction coefficient, W is the normal load, L is the sliding length, and H is the material surface hardness.
4. Conclusions
- When the melting current is 200 A, the coating shows a single BCC structure. When the melting current is 220 A and 240 A, the coating is a mixed phase of FCC and BCC. When the melting current is 220 A, the coating microstructure is a coarse columnar crystal. When the melting current is 200 A and 240 A, the coating microstructure is a fine equiaxed crystal.
- The coating has the highest average microhardness of 689.73 HV at a melting current of 200 A, which is twice the average hardness of the base material. As the current increases, the average microhardness of the coating decreases significantly with the decrease in Cr segregation in the coating and the generation of the Si-containing FCC phase.
- The wear resistance of the coating is weakest at 220 A, which is only 1/3 of the maximum wear depth of the base material. The cross-sectional area of the abrasion marks is 1/5 of the cross-sectional area of the base material. The wear rate is 6168.82 μm3/(N∙μm), which is only 22% of the wear rate of the base material. The wear mechanism of the coating at 220 A is mainly adhesive wear and oxidation wear. When the melting current is 200 A, the prepared high-entropy alloy coatings have good wear resistance and meet the practical production requirements.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–311. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.; Knight, P.; Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, J.K.; Ji, C.Y.; Guo, Y.Z.; Fang, R.; Mei, S.W.; Liu, S. Laser powder bed fusion of high-entropy alloy particle-reinforced stainless steel with enhanced strength, ductility, and corrosion resistance. Mater. Des. 2021, 209, 109950. [Google Scholar] [CrossRef]
- Prabhu, T.R.; Arivarasu, M.; Chodancar, Y.; Arivazhagan, N.; Sumanth, G.; Mishra, R.K. Tribological Behaviour of Graphite-Reinforced FeNiCrCuMo High-Entropy Alloy Self-Lubricating Composites for Aircraft Braking Energy Applications. Tribol. Lett. 2019, 67, 78–93. [Google Scholar] [CrossRef]
- Muangtong, P.; Rodchanarowan, A.; Chaysuwan, D.; Chanlek, N.; Goodall, R. The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution. Corros. Sci. 2020, 172, 108740. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 2007, 90, 181904. [Google Scholar] [CrossRef]
- Moghaddam, A.O.; Sudarikov, M.; Shaburova, N.; Zherebtsov, D.; Zhivulin, V.; Solizoda, I.A.; Starikov, A.; Veselkov, S.; Samoilova, O.; Trofimov, E. High temperature oxidation resistance of W-containing high-entropy alloys. J. Alloys Compd. 2022, 897, 162733. [Google Scholar] [CrossRef]
- Jin, B.Q.; Zhang, N.N.; Zhang, Y.; Li, D.Y. Microstructure, phase composition and wear resistance of low valence electron concentration AlxCoCrFeNiSi high-entropy alloys prepared by vacuum arc melting. J. Iron. Steel. Res. Int. 2021, 28, 181–189. [Google Scholar] [CrossRef]
- Campari, E.G.; Casagrande, A.; Colombini, E.; Gualtier, M.L.; Veronesi, P. The Effect of Zr Addition on Melting Temperature, Microstructure, Recrystallization and Mechanical Properties of a Cantor High-entropy Alloy. Materials 2021, 14, 5994. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.; Lee, H.W.; Jung, I.H.; Kim, Y.M. Microstructural Characterization of TiC-Reinforced Metal Matrix Composites Fabricated by Laser Cladding Using FeCrCoNiAlTiC High-entropy Alloy Powder. Appl. Sci. 2021, 11, 6580. [Google Scholar] [CrossRef]
- Hruška, P.; Lukáč, F.; Cichoň, S.; Vondráček, M.; Čížek, J.; Fekete, L.; Lančok, J.; Veselý, J.; Minárik, P.; Cieslar, M.; et al. Oxidation of amorphous HfNbTaTiZr high-entropy alloy thin films prepared by DC magnetron sputtering. J. Alloys Compd. 2021, 869, 157978. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Rehman, E.U.; Ullah, S.; Tariq, A. A review on laser cladding of high-entropy alloys, their recent trends and potential applications. J. Manuf. Process. 2021, 68, 225–273. [Google Scholar] [CrossRef]
- Fujieda, T.; Shiratori, H.; Kuwabara, K.; Kato, T.; Yamanaka, K.; Koizumi, Y.; Chiba, A. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials. Mater. Lett. 2015, 159, 12–15. [Google Scholar] [CrossRef]
- Gao, P.; Fu, R.; Liu, J.; Chen, B.; Zhang, B.; Zhao, D.; Yang, Z.; Guo, Y.C.; Liang, M.X.; Li, J.P.; et al. Influence of Plasma Arc Current on the Friction and Wear Properties of CoCrFeNiMn High-entropy Alloy Coatings Prepared on CGI through Plasma Transfer Arc Cladding. Coatings 2022, 12, 633. [Google Scholar] [CrossRef]
- Fan, Q.K.; Chen, C.; Fan, C.L.; Liu, Z.; Cai, X.Y.; Lin, S.B.; Yang, C.L. Ultrasonic suppression of element segregation in gas tungsten arc cladding AlCoCuFeNi high-entropy alloy coatings. Surf. Coat. Technol. 2021, 420, 127364. [Google Scholar] [CrossRef]
- Duriagina, Z.; Kulyk, V.; Kovbasiuk, T.; Vasyliv, B.; Kostryzhev, A. Synthesis of Functional Surface Layers on Stainless Steels by Laser Alloying. Metals. 2021, 11, 434. [Google Scholar] [CrossRef]
- Duriagina, Z.; Kovbasyuk, T.; Kulyk, V.; Trostianchyn, A.; Tepla, T. Technologies of High-Temperature Insulating Coatings on Stainless Steels; Engineering Steels and High Entropy-Alloys; IntechOpen: London, UK, 2020; pp. 57–80. [Google Scholar]
- Shen, Q.K.; Kong, X.D.; Chen, X.Z. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties. J. Mater. Sci. Technol. 2021, 74, 136–142. [Google Scholar] [CrossRef]
- Dong, B.S.; Wang, Z.Y.; Pan, Z.X.; Muránsky, O.; Shen, C.; Reid, M.; Wu, B.T.; Chen, X.Z.; Li, H.J. On the development of pseudo-eutectic AlCoCrFeNi2.1 high entropy alloy using Powder-bed Arc Additive Manufacturing (PAAM) process. Mat. Sci. Eng. A–Struct. 2021, 802, 140639. [Google Scholar] [CrossRef]
- Fan, Q.K.; Chen, C.; Fan, C.L.; Liu, Z.; Cai, X.Y.; Lin, S.B.; Yang, C.L. Ultrasonic induces grain refinement in gas tungsten arc cladding AlCoCrFeNi high-entropy alloy coatings. Mat. Sci. Eng. A–Struct. 2021, 821, 141607. [Google Scholar] [CrossRef]
- Sokkalingam, R.; Muthupandi, V.; Sivaprasad, K.; Prashanth, K.G. Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel. J. Mater. Res. 2019, 34, 2683–2694. [Google Scholar] [CrossRef]
- Shen, Q.K.; Xue, J.X.; Yu, X.Y.; Zheng, Z.H.; Ou, N. Triple-wire plasma arc cladding of Cr-Fe-Ni-Tix high-entropy alloy coatings. Surf. Coat. Technol. 2022, 443, 128638. [Google Scholar] [CrossRef]
- Cheng, J.B.; Sun, B.; Ge, Y.Y.; Hu, X.L.; Zhang, L.H.; Liang, X.B.; Zhang, X.C. Effect of B/Si ratio on structure and properties of high-entropy glassy Fe25Co25Ni25(BxSi1-x)25 coating prepared by laser cladding. Surf. Coat. Technol. 2020, 402, 126320. [Google Scholar] [CrossRef]
- Chao, Q.; Guo, T.; Jarvis, T.; Wu, X.H.; Hodgson, P.; Fabijanic, D. Direct Laser Deposition Cladding of AlxCoCrFeNi High-entropy Alloys on a High-temperature Stainless Steel. Surf. Coat. Technol. 2017, 332, 440–451. [Google Scholar] [CrossRef]
- Middleburgh, S.C.; King, D.M.; Lumpkin, G.R.; Cortie, M.; Edwards, L. Segregation and migration of species in the CrCoFeNi high-entropy alloy. J. Alloys Compd. 2014, 599, 179–182. [Google Scholar] [CrossRef]
- Zhang, G.J.; Tian, Q.W.; Yin, K.X.; Niu, S.Q.; Wu, M.H.; Wang, W.W.; Wang, Y.N.; Huang, J.C. Effect of Fe on microstructure and properties of AlCoCrFexNi(x = 1.5,2.5) high-entropy alloy coatings prepared by laser cladding. Intermetallics 2020, 119, 106722. [Google Scholar] [CrossRef]
- Wang, H.B.; Gee, M.; Qiu, Q.F.; Zhang, H.; Liu, X.M.; Nie, H.B.; Song, X.Y.; Nie, Z.R. Grain size effect on wear resistance of WC-Co cemented carbides under different tribological conditions. J. Mater. Sci. Technol. 2019, 35, 2435–2446. [Google Scholar] [CrossRef]
- Jin, B.Q.; Zhang, N.N.; Yu, H.S.; Hao, D.X.; Ma, Y.L. AlxCoCrFeNiSi high-entropy alloy coatings with high microhardness and improved wear resistance. Surf. Coat. Technol. 2020, 402, 126328. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Lu, W.; Bao, Y.; Xia, W.Z.; Wu, X.X.; Zhao, H.; Gault, B.; Liu, C.L.; Herbig, M.; et al. Reactive wear protection through strong and deformable oxide nanocomposite surfaces. Nat. Commun. 2021, 12, 5518. [Google Scholar] [CrossRef]
Coating | Point | Fe | Cr | Mn | Cu | Ni | Si |
---|---|---|---|---|---|---|---|
200 A | 1 | 41.8 | 17.4 | 13.9 | 10.2 | 13.5 | 1.1 |
2 | 54.2 | 13.7 | 11.6 | 8.4 | 10.2 | 0.6 | |
220 A | 3 | 63.6 | 9.8 | 8.8 | 5.6 | 8.4 | 1.9 |
4 | 68.7 | 7.8 | 8.2 | 4.3 | 8.1 | 1.4 | |
240 A | 5 | 52.9 | 15.2 | 13.5 | 7.5 | 8.6 | 1.0 |
6 | 62.5 | 10.1 | 10.0 | 6.7 | 8.3 | 0.9 |
Sample | Maximum Wear Depth μm | Wear Cross-Sectional Area μm2 | Wear Rate μm3/(N∙μm) |
---|---|---|---|
40Cr | 52.5 | 39,765 | 26,984.86 |
200 A | 11.6 | 4133 | 2999.76 |
220 A | 18.4 | 7791 | 6168.82 |
240 A | 15.5 | 4052 | 2245.86 |
Sample | Point | Fe | Cr | Mn | Cu | Ni | Si |
---|---|---|---|---|---|---|---|
40Cr | 1 | 80.3 | 15.5 | 1.4 | 1.4 | 0.9 | 0.2 |
2 | 96.2 | 0 | 1.9 | 1.0 | 0.7 | 0 | |
200A | 3 | 60.3 | 7.9 | 0.9 | 7.6 | 8.1 | 6.5 |
4 | 67.1 | 0.6 | 1.3 | 7.4 | 8.5 | 6.3 | |
220A | 5 | 57.2 | 17.1 | 1.1 | 5.8 | 7.7 | 4.2 |
6 | 66.2 | 1.9 | 1.2 | 5.4 | 8.1 | 7.4 | |
240A | 7 | 53.6 | 13.9 | 1.1 | 9.0 | 8.2 | 5.8 |
8 | 66.3 | 0 | 1.2 | 8.6 | 7.3 | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, X.; Cong, M.; Lei, W. Effect of Cladding Current on Microstructure and Wear Resistance of High-Entropy Powder-Cored Wire Coating. Metals 2022, 12, 1718. https://doi.org/10.3390/met12101718
Shan X, Cong M, Lei W. Effect of Cladding Current on Microstructure and Wear Resistance of High-Entropy Powder-Cored Wire Coating. Metals. 2022; 12(10):1718. https://doi.org/10.3390/met12101718
Chicago/Turabian StyleShan, Xinghai, Mengqi Cong, and Weining Lei. 2022. "Effect of Cladding Current on Microstructure and Wear Resistance of High-Entropy Powder-Cored Wire Coating" Metals 12, no. 10: 1718. https://doi.org/10.3390/met12101718
APA StyleShan, X., Cong, M., & Lei, W. (2022). Effect of Cladding Current on Microstructure and Wear Resistance of High-Entropy Powder-Cored Wire Coating. Metals, 12(10), 1718. https://doi.org/10.3390/met12101718