Green Low-Carbon Technology for Metalliferous Minerals
1. Introduction and Scope
2. Contributions
3. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Gao, W.; Li, Z.; Zhang, S.; Zhang, Y.; Fu, P.; Yang, H.; Ni, W. Enhancing Arsenic Solidification/Stabilisation Efficiency of Metallurgical Slag-Based Green Mining Fill and Its Structure Analysis. Metals 2021, 11, 1389. [Google Scholar] [CrossRef]
- Cui, X.; Yuan, X.; Li, H.; Che, X.; Zhong, J.; Wang, L.; Liu, Y.; Hu, X.; Zhang, Q.; Jin, R.; et al. Copper and Zinc Recovery from Sulfide Concentrate by Novel Artificial Microbial Community. Metals 2021, 12, 45. [Google Scholar] [CrossRef]
- Tan, Y.; Guo, M.; Hao, Y.; Zhang, C.; Song, W. Structural Parameter Optimization for Large Spacing Sublevel Caving in Chengchao Iron Mine. Metals 2021, 11, 1619. [Google Scholar] [CrossRef]
- Li, N.; Feng, S.; Ye, H.; Wang, Q.; Jia, M.; Wang, L.; Zhao, S.; Chen, D. Dispatch Optimization Model for Haulage Equipment between Stopes Based on Mine Short-Term Resource Planning. Metals 2021, 11, 1848. [Google Scholar] [CrossRef]
- Lin, S.-Q.; Wang, G.-J.; Liu, W.-L.; Zhao, B.; Shen, Y.-M.; Wang, M.-L.; Li, X.-S. Regional Distribution and Causes of Global Mine Tailings Dam Failures. Metals 2022, 12, 905. [Google Scholar] [CrossRef]
- Zhen, Z.; Zhang, Y.; Hu, M. Propagation Laws of Reclamation Risk in Tailings Ponds Using Complex Network Theory. Metals 2021, 11, 1789. [Google Scholar] [CrossRef]
- Wang, C.; Gan, D. Study and Analysis on the Influence Degree of Particle Settlement Factors in Pipe Transportation of Backfill Slurry. Metals 2021, 11, 1780. [Google Scholar] [CrossRef]
- Li, Z.; Guo, L.; Zhao, Y.; Peng, X.; Kyegyenbai, K. A Particle Size Distribution Model for Tailings in Mine Backfill. Metals 2022, 12, 594. [Google Scholar] [CrossRef]
- Wang, W.; Mu, H.; Mei, G.; Guo, L.; Lu, X.; Wang, A.; Sun, R. The Characteristics of Spiral Pipe Increasing Resistance and Reducing Pressure and the Amendment Equation of Stowing Gradient. Metals 2022, 12, 1105. [Google Scholar] [CrossRef]
- Xie, J.; Qiao, D.; Han, R.; Wang, J. Tailings Settlement Velocity Identification Based on Unsupervised Learning. Metals 2021, 11, 1903. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, S.; Cheng, H.; Geng, X.; Liu, J. Response of Floc Networks in Cemented Paste Backfill to a Pumping Agent. Metals 2021, 11, 1906. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, K.; He, X.; Wei, Z.; Zhao, X.; Fang, J. Experimental Study on Strength Development and Engineering Performance of Coal-Based Solid Waste Paste Filling Material. Metals 2022, 12, 1155. [Google Scholar] [CrossRef]
- Peng, X.; Guo, L.; Liu, G.; Yang, X.; Chen, X. Experimental Study on Factors Influencing the Strength Distribution of In Situ Cemented Tailings Backfill. Metals 2021, 11, 2059. [Google Scholar] [CrossRef]
- Le, Z.-H.; Yu, Q.-L.; Pu, J.-Y.; Cao, Y.-S.; Liu, K. A Numerical Model for the Compressive Behavior of Granular Backfill Based on Experimental Data and Application in Surface Subsidence. Metals 2022, 12, 202. [Google Scholar] [CrossRef]
- Liu, L.; Li, R.; Qin, H.; Sun, W. Experimental SHPB Study of Limestone Damage under Confining Pressures after Exposure to Elevated Temperatures. Metals 2021, 11, 1663. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, S.-T.; Yang, F.-W.; Wang, Z.-X.; Zhang, H.; Ma, K.; Li, X.-J. Monitoring and Analysis of Dynamic Response for Open-Pit Mine with Inside Inclined Shafts under Train Loading. Metals 2021, 11, 1681. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, W.; Guo, S.; An, H. Numerical Modelling of Blasting Dust Concentration and Particle Size Distribution during Tunnel Construction by Drilling and Blasting. Metals 2022, 12, 547. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L. Green Low-Carbon Technology for Metalliferous Minerals. Metals 2022, 12, 1719. https://doi.org/10.3390/met12101719
Guo L. Green Low-Carbon Technology for Metalliferous Minerals. Metals. 2022; 12(10):1719. https://doi.org/10.3390/met12101719
Chicago/Turabian StyleGuo, Lijie. 2022. "Green Low-Carbon Technology for Metalliferous Minerals" Metals 12, no. 10: 1719. https://doi.org/10.3390/met12101719
APA StyleGuo, L. (2022). Green Low-Carbon Technology for Metalliferous Minerals. Metals, 12(10), 1719. https://doi.org/10.3390/met12101719