Quality Diagnostics of Parts Produced by Combined Additive Manufacturing Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. LDED Equipment
2.3. Sample Characterization
2.4. Fretting Wear Tests
2.5. Abrasive Wear Tests
3. Results and Discussion
3.1. Determination of Preferential Parameters for LDED
3.2. Fretting Wear
3.3. Abrasive Wear
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pathak, S.; Saha, G.C. Development of Sustainable Cold Spray Coatings and 3D Additive Manufacturing Components for Repair/Manufacturing Applications: A Critical Review. Coatings 2017, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Sova, A.; Okunkova, A.; Grigoriev, S.; Smurov, I. Velocity of the particles accelerated by a cold spray micronozzle: Experimental measurements and numerical simulation. J. Therm. Spray Technol. 2013, 22, 75–80. [Google Scholar] [CrossRef]
- Sova, A.; Grigoriev, S.; Okunkova, A.; Smurov, I. Potential of cold gas dynamic spray as additive manufacturing technology. Int. J. Adv. Manuf. Technol. 2013, 69, 2269–2278. [Google Scholar] [CrossRef]
- Kotoban, D.; Grigoriev, S.; Okunkova, A.; Sova, A. Influence of a shape of single track on deposition efficiency of 316L stainless steel powder in cold spray. Surf. Coat. Technol. 2017, 309, 951–958. [Google Scholar] [CrossRef]
- Tarasova, T.V. Prospects for the use of laser radiation to improve the wear resistance of corrosion-resistant steels. Met. Sci. Heat Treat. Met. 2010, 6, 54–58. [Google Scholar]
- ASTMF2792-12a. Standard Terminology for Additive Manufacturing Technologies. ASTM International: West Conshohocken, PA, USA, 2012.
- ISO/ASTM 52900:2015. Additive Manufacturing—General Principles—Terminology. ISO/ASTM International: Geneva, Switzerland, 2015; p. 19. Available online: https://www.sis.se/api/document/preview/919975/ (accessed on 15 August 2015).
- Gusarov, A.V.; Grigoriev, S.N.; Volosova, M.A.; Melnik, Y.A.; Laskin, A.; Kotoban, D.V.; Okunkova, A.A. On productivity of laser additive manufacturing. J. Mater. Process. Technol. 2018, 261, 213–232. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Tarasova, T.V. Possibilities of the technology of additive production for making complex-shape parts and depositing functional coatings from metallic powders. Met. Sci. Heat Treat. 2016, 57, 579–584. [Google Scholar] [CrossRef]
- Khmyrov, R.S.; Grigoriev, S.N.; Okunkova, A.A.; Gusarov, A.V. On the possibility of selective laser melting of quartz glass. Phys. Procedia 2014, 56, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Khmyrov, R.S.; Protasov, C.E.; Grigoriev, S.N.; Gusarov, A.V. Crack-free selective laser melting of silica glass: Single beads and monolayers on the substrate of the same material. Int. J. Adv. Manuf. Technol. 2016, 85, 1461–1469. [Google Scholar] [CrossRef]
- Doubenskaia, M.; Pavlov, M.; Grigoriev, S.N.; Smurov, I. Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera. Surf. Coat. Technol. 2013, 220, 244–247. [Google Scholar] [CrossRef]
- Doubenskaia, M.; Pavlov, M.; Grigoriev, S.N.; Tikhonova, E.; Smurov, I. Comprehensive Optical Monitoring of Selective Laser Melting. J. Laser Micro Nanoeng. 2012, 7, 236–243. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Teleshevskii, V.I. Measurement problems in technological shaping processes. Meas. Tech. 2011, 54, 744–749. [Google Scholar] [CrossRef]
- Smurov, I.; Doubenskaia, M.; Grigoriev, S.N.; Nazarov, A. Optical Monitoring in Laser Cladding of Ti6Al4V. J. Therm. Spray Tech. 2012, 21, 1257–1362. [Google Scholar] [CrossRef]
- Ding, Y.; Bi, W.; Zhong, C.; Wu, T.; Gui, W. A Comparative Study on Microstructure and Properties of Ultra-High-Speed Laser Cladding and Traditional Laser Cladding of Inconel625 Coatings. Materials 2022, 15, 6400. [Google Scholar] [CrossRef]
- Parthasarathy, T.; Mendiratta, M.; Dimiduk, D. Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)–Mo3Si alloys. Acta Mater. 2002, 50, 1857–1868. [Google Scholar] [CrossRef]
- Dimiduk, D.M.; Perepezko, J.H. Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material. MRS Bull. 2003, 28, 639–645. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Li, Z.; Qu, Y.; Li, X. Comparative Study on the Surface Remelting of Mo-Si-B Alloys with Laser and Electron Beam. Materials 2022, 15, 6223. [Google Scholar] [CrossRef]
- Zhao, J.-C.; Westbrook, J.H. Ultrahigh-Temperature Materials for Jet Engines. MRS Bull. 2003, 28, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Lemberg, J.A.; Ritchie, R.O. Mo-Si-B Alloys for Ultrahigh-Temperature Structural Applications. Adv. Mater. 2012, 24, 3445–3480. [Google Scholar] [CrossRef]
- Bewlay, B.P.; Jackson, M.R.; Subramanian, P.; Zhao, J.-C. A review of very-high-temperature Nb-silicide-based composites. Metall. Mater. Trans. A 2003, 34, 2043–2052. [Google Scholar] [CrossRef]
- Perepezko, J.H. The Hotter the Engine, the Better. Science 2009, 326, 1068–1069. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shan, A.; Dong, X.; Wu, J. Microstructure and oxidation resistance of laser-remelted Mo–Si–B alloy. Scr. Mater. 2007, 56, 737–740. [Google Scholar] [CrossRef]
- Makineni, S.; Kini, A.; Jägle, E.; Springer, H.; Raabe, D.; Gault, B. Synthesis and stabilization of a new phase regime in a Mo-Si-B based alloy by laser-based additive manufacturing. Acta Mater. 2018, 151, 31–40. [Google Scholar] [CrossRef]
- Schmelzer, J.; Rittinghaus, S.-K.; Weisheit, A.; Stobik, M.; Paulus, J.; Gruber, K.; Wessel, E.; Heinze, C.; Krüger, M. Printability of gas atomized Mo-Si-B powders by laser metal deposition. Int. J. Refract. Met. Hard Mater. 2018, 78, 123–126. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, X.; Tsunoda, K.; Kikuchi, K.; Nomura, N.; Yoshimi, K.; Kawasaki, A. Powder fabrication and laser additive manufacturing of MoSiBTiC alloy. Intermetallics 2019, 104, 33–42. [Google Scholar] [CrossRef]
- Zhou, W.; Tsunoda, K.; Nomura, N.; Yoshimi, K. Effect of hot isostatic pressing on the microstructure and fracture toughness of laser additive-manufactured MoSiBTiC multiphase alloy. Mater. Des. 2020, 196, 10913. [Google Scholar] [CrossRef]
- Fichtner, D.; Schmelzer, J.; Yang, W.; Heinze, C.; Krüger, M. Additive manufacturing of a near-eutectic Mo–Si–B alloy: Processing and resulting properties. Intermetallics 2020, 128, 107025. [Google Scholar] [CrossRef]
- Guo, Z.; Han, R.; Li, Y.; Zhu, Y.; Zhang, B.; Zhang, H. Mo-Si-B Alloy Formed by Optional Laser Melting Process. Int. J. Anal. Chem. 2022, 2022, 4996265. [Google Scholar] [CrossRef]
- Metel, A.S.; Tarasova, T.; Skorobogatov, A.; Podrabinnik, P.; Melnik, Y.; Grigoriev, S.N. Feasibility of Production of Multimaterial Metal Objects by Laser-Directed Energy Deposition. Metals 2022, 12, 1566. [Google Scholar] [CrossRef]
- Yan, A.; Atif, A.M.; Wang, X.; Lan, T.; Wang, Z. The Microstructure and Cracking Behaviors of Pure Molybdenum Fabricated by Selective Laser Melting. Materials 2022, 15, 6230. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, Z.; Cheng, D.; Sun, Z.; Zhu, M.; Li, L. An overview of laser-based multiple metallic material additive manu facturing: From macro- to micro-scales. Int. J. Extrem. Manuf. 2021, 3, 012003. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, X.; Kong, L.; Dong, G.; Remani, A.; Leach, R. Defect inspection technologies for additive manufacturing. Int. J. Extrem. Manuf. 2021, 3, 022002. [Google Scholar] [CrossRef]
Material | Elements Composition, % Mass | |||||
---|---|---|---|---|---|---|
Fe | C | Mn | Si | S | P | |
25L steel | Balance | 0.30 | 0.54 | 0.51 | 0.019 | 0.024 |
Material | Elements Composition, % Mass | ||
---|---|---|---|
Mo | Residual Elements 1, Total | O | |
PMS-M99.9 | Balance | 0.1 | 0.025 |
PM-M | Balance | 0.2 | 0.025 |
Material | Flowability, s | Packed Density, g/cm3 | Tap Density, g/cm3 |
---|---|---|---|
PMS-M99.9 | 10.4 | 6.4 | 7.14 |
PM-M | n/a | 3.96 | 5.3 |
Displacement D, µm | Frequency f, Hz | Load Fn, N | Number of cycles N | Atmosphere |
---|---|---|---|---|
100 | 20 | 5 | 105 | Air |
Bead No. | Laser Power, W | Scanning Velocity, mm/min | Powder Feed Rate, g/min | Hardness, HV |
---|---|---|---|---|
1 | 360 | 200 | 2 | 248 ± 3 |
2 | 360 | 300 | 2 | 275 ± 12 |
3 | 360 | 400 | 2 | 503 ± 10 |
4 | 360 | 200 | 4 | 287 ± 15 |
5 | 360 | 300 | 4 | 300 ± 5 |
6 | 360 | 400 | 4 | 390 ± 16 |
7 | 480 | 200 | 4 | 278 ± 8 |
8 | 480 | 300 | 4 | 416 ± 24 |
9 | 480 | 400 | 4 | 465 ± 11 |
10 | 480 | 200 | 6 | 319 ± 26 |
11 | 480 | 300 | 6 | 336 ± 15 |
12 | 480 | 400 | 6 | 500 ± 30 |
Spectrum No. | Elements Composition, wt.% | |||
---|---|---|---|---|
Si | Mn | Fe | Mo | |
1 | - | - | - | 100.00 |
2 | - | - | - | 100.00 |
3 | 0.3 | - | 29.68 | 70.02 |
4 | 0.35 | - | 38.79 | 60.86 |
5 | - | - | - | 100.00 |
6 | - | - | - | 100.00 |
7 | 0.41 | 0.24 | 49.20 | 50.15 |
8 | 0.43 | 0.34 | 49.52 | 49.71 |
9 | 0.75 | 0.54 | 98.59 | 0.12 |
10 | 0.63 | 0.45 | 98.81 | 0.11 |
Test | LDED PMS-M99.9 Powder | Brazing VM1 | LDED PM-M Powder |
---|---|---|---|
1 | 1,218,335 | 2,396,864 | 3,351,274 |
2 | 1,313,380 | 2,746,736 | 2,586,375 |
3 | 1,237,625 | 2,495,547 | 2,855,039 |
Volumetric Wear of Mo Layer (mm3) | |||
---|---|---|---|
Test Duration, min | LDED PMS-M99.9 Powder | Brazing VM1 | LDED PM-M Powder |
5 | 0.000759 | 0.000635 | 0.001548 |
10 | 0.001249 | 0.001722 | 0.003169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metel, A.S.; Tarasova, T.; Skorobogatov, A.; Podrabinnik, P.; Volosova, M.; Grigoriev, S.N. Quality Diagnostics of Parts Produced by Combined Additive Manufacturing Technology. Metals 2023, 13, 19. https://doi.org/10.3390/met13010019
Metel AS, Tarasova T, Skorobogatov A, Podrabinnik P, Volosova M, Grigoriev SN. Quality Diagnostics of Parts Produced by Combined Additive Manufacturing Technology. Metals. 2023; 13(1):19. https://doi.org/10.3390/met13010019
Chicago/Turabian StyleMetel, Alexander S., Tatiana Tarasova, Andrey Skorobogatov, Pavel Podrabinnik, Marina Volosova, and Sergey N. Grigoriev. 2023. "Quality Diagnostics of Parts Produced by Combined Additive Manufacturing Technology" Metals 13, no. 1: 19. https://doi.org/10.3390/met13010019
APA StyleMetel, A. S., Tarasova, T., Skorobogatov, A., Podrabinnik, P., Volosova, M., & Grigoriev, S. N. (2023). Quality Diagnostics of Parts Produced by Combined Additive Manufacturing Technology. Metals, 13(1), 19. https://doi.org/10.3390/met13010019