Porous Fabrication of White Metal Using Ultrasonically Generated Microbubbles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microbubble Generator
2.3. Fabrication Process for Porous Metals
- Sample metal in the amount of 200 g is placed into a stainless-steel cup measuring φ40 mm × 35 mm; then, the cup is placed in a furnace (FT-01P, FULL-TECH Co., Ltd., Yao, Japan);
- The tip of the ultrasonic horn is inserted into the molten metal to a depth 12 mm below the surface. Air is then blown through the orifices at the tip of the horn into the molten metal at a rate of 100 mL/min using a tube pump (Masterflex 7554-90, Cole-Parmer Instrument Co., Ltd., Vernon Hills, IL, USA);
- The samples of LLS-138, white metal, and zinc are heated to 300, 500, and 550 °C, respectively. Except in the case of zinc, due to the risk of its thermal ignition, silicone oil is filled in the test section to suppress the temperature difference between the top and bottom of the molten metal;
- Ultrasonic oscillation is applied for 10 min to generate microbubbles in the molten metal;
- The stainless-steel cup holding the foamed molten metal is extracted from the furnace and cooled in cold water at 10 °C–15 °C.
3. Results and Discussion
3.1. Fabrication of Porous Metals
3.2. Internal Structure of Fabricated White Metal
3.3. Pore Size of Fabricated White Metal
3.4. Relationship between Porosity and Compressive Deformation of White Metal
3.5. Application to Other Metal Alloys (LLS-138 and Zinc)
4. Conclusions
- Utilizing an ultrasonic microbubble generator enables the creation of closed-cell porous metals featuring microscale pores, even if the melting point is 419 °C;
- Many small pores with diameters of less than 1 mm were observed in the porous metal after formation;
- In molten white metal, the bubbles generated from the ultrasonic horn were larger than those of water because secondary breakup was less likely to occur due to the decrease in resonance bubble diameter and thermal expansion of the bubbles;
- The developed method allows for the fabrication of porous metals that exhibit porosities exceeding 45%, provided that the melting point is 419 °C or less;
- The higher the melting point, the larger the pores and the lower the porosity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, P.S.; Chen, G.F. Porous Materials; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Yuan, L.; Ding, S.; Wen, C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioact. Mater. 2019, 4, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Mabuchi, M.; Yamada, Y.; Wen, C. Compressive properties of metallic cellular materials. Foundry Eng. 2002, 74, 822–827. [Google Scholar]
- Suzuki, R.; Kitazono, K. Effect of graded pore distribution on thermal insulation of metal foam. J. Jpn. Inst. Met. 2008, 72, 758–762. [Google Scholar] [CrossRef]
- Hakamada, M.; Mabuchi, M. Fabrication by spacer method and evaluation of porous metals. J. Jpn. Inst. Light Met. 2012, 62, 313–321. [Google Scholar] [CrossRef]
- Liu, P.S.; Ma, X.M. Property relations based on the octahedral structure model with body-centered cubic mode for porous metal foams. Mater. Des. 2019, 188, 108413. [Google Scholar] [CrossRef]
- Egorov, V.; O’Dwyer, C. Architected porous metals in electrochemical energy storage. Curr. Opin. Electrochem. 2020, 21, 201–208. [Google Scholar] [CrossRef]
- Selivanov, V.V.; Silnikov, M.V.; Markov, V.A.; Popov, Y.V.; Pusev, V.I. Using highly porous aluminum alloys and honeycomb structures in spacecraft landing gear. Acta Astronaut. 2021, 180, 105–109. [Google Scholar] [CrossRef]
- Duan, H.; Shen, X.; Yin, Q.; Yang, F.; Bai, P.; Zhang, X.; Pan, M. Modeling and optimization of sound absorption coefficient of microperforated compressed porous metal panel absorber. Appl. Acoust. 2020, 166, 107322. [Google Scholar] [CrossRef]
- Yang, X.; Shen, X.; Duan, H.; Zhang, X.; Yin, Q. Identification of Acoustic Characteristic Parameters and Improvement of Sound Absorption Performance for Porous Metal. Metals 2020, 10, 340. [Google Scholar] [CrossRef]
- Baumgaertner, F.; Duarte, I.; Banhart, I. Industrialization of powder compact toaming process. Adv. Mater. 2000, 2, 168–174. [Google Scholar] [CrossRef]
- Atwater, M.A.; Guevara, L.N.; Darling, K.A. Tschopp, Solid State Porous Metal Production: A Review of the Capabilities, Characteristics, and Challenges. Adv. Eng. Mater. 2018, 20, 1700766. [Google Scholar] [CrossRef]
- Eckhoff, R.K.; Li, G. Industrial Dust Explosions, A Brief Review. Appl. Sci. 2021, 11, 1669. [Google Scholar] [CrossRef]
- Terasaka, K.; Tsuge, H. Bubble formation under constant-flow conditions. Chem. Eng. Sci. 1993, 48, 3417–3422. [Google Scholar] [CrossRef]
- Iguchi, M.; Kondoh, T.; Uemura, T.; Yamamoto, F.; Morita, Z. Bubble and liquid flow characteristics in a cylindrical bath during swirl motion of bubbling jet. Exp. Fluids 1994, 16, 255–262. [Google Scholar] [CrossRef]
- Makuta, T.; Aizawa, Y.; Suzuki, R. Sonochemical reaction with microbubbles generated by hollow ultrasonic horn. Ultrason. Sonochemistry 2013, 20, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Makuta, T.; Suzuki, R.; Nakao, T. Generation of microbubbles from hollow cylindrical ultrasonic horn. Ultrasonics 2013, 53, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Katayose, A.; Yokose, R.; Makuta, T. Fabrication of closed-cell porous metals by using ultrasonically generated microbubbles. Mater. Lett. 2016, 185, 211–213. [Google Scholar] [CrossRef]
- Tsuge, H. The Latest Technology on Microbubbles and Nanobubbles; CMC Publishing, Co.: Chiyoda, Japan, 2010; Volume 2, pp. 57–58. [Google Scholar]
- Takahashi, M. The Latest Technology of Microbubbles; NTS Inc.: New York, NY, USA, 2006; pp. 3–13. [Google Scholar]
- Takahashi, M. Zeta Potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface. J. Phys. Chem. B 2005, 109, 21858–21864. [Google Scholar] [CrossRef]
- Plesset, M.S.; Prosperetti, A. Bubble Dynamics and Cavitation. Annu. Rev. Fluid Mech. 1977, 9, 145–185. [Google Scholar] [CrossRef]
- Plevachuk, Y.; Hoyer, W.; Kaban, I.; Köhler, M.; Novakovic, R. Experimental study of density, surface tension, and contact angle of Sn–Sb-based alloys for high temperature soldering. J. Mater. Sci. 2010, 45, 2051–2056. [Google Scholar] [CrossRef]
- Itoh, M.; Nishikawa, T.; Morimoto, K.; Akiyama, S.; Ueno, H. Development of foamed aluminum “ALPORAS”. J. Jpn. Inst. Met. 1987, 26, 311–313. [Google Scholar]
- Kobashi, M.; Tanahashi, S.; Kanetake, N. Foaming behavior of porous aluminum by heating of precursors of Al-TiH2 powder. J. Jpn. Inst. Light Met. 2003, 53, 427–432. [Google Scholar] [CrossRef]
- Kränzlina, N.; Niederberger, M. Controlled fabrication of porous metals from the nanometer to the macroscopic scale. Mater. Horiz. 2015, 2, 359–377. [Google Scholar] [CrossRef]
- Torres-Sanchez, C.; Al Mushref, F.R.A.; Norrito, M.; Yendall, K.; Liu, Y.; Conway, P.P. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater. Sci. Eng. C 2017, 77, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Ashby, M.F.; Evans, T.; Fleck, N.A.; Hutchinson, J.W.; Wadley, H.N.G.; Gibson, L.J. Metal Foams: A Design Guide; Butterworth-Heinemann: Oxford, UK, 2000. [Google Scholar]
- ISO 13314:2011; Mechanical Testing of Metals—Ductility Testing—Compression Test for Porous and Cellular Metals. ISO (International Organization for Standardization): Geneva, Switzerland, 2011.
- Nishi, S.; Makii, K.; Ariga, Y.; Hamada, T.; Naito, J.; Miyoshi, T. The manufacturing process and mechanical properties of porous aluminum. R&D Kobe Steel Eng. Rep. 2004, 54, 89–94. [Google Scholar]
- Hakamada, M.; Asao, Y.; Kuromura, T.; Chen, Y.; Kusuda, H.; Mabuchi, M. Density dependence of the compressive properties of porous copper over a wide density range. Acta Mater. 2007, 55, 2291–2299. [Google Scholar] [CrossRef]
- Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar] [CrossRef]
Term | LLS-138 | White Metal | Zinc |
---|---|---|---|
Melting temp. | 180 °C | 325 °C | 470 °C |
Heating temp. | 300 °C | 500 °C | 550 °C |
Oil temp. | 150 °C | 295 °C | Not used |
Supplied gas | Air | ||
Supply gas flow rate | 100 mL/min | ||
Insertion depth | 12 mm | ||
Frequency | 19.5 kHz | ||
Amplitude | 40 μm |
Metal | Melting Point (°C) | Average Pore Diameter (µm) | Porosity (%) |
---|---|---|---|
LLS-138 | 138 | 103 | 76.0 |
White metal | 235 | 220 | 54.0 |
Zinc | 419 | 244 | 48.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, Y.; Nozawa, H.; Xing, W.; Makuta, T. Porous Fabrication of White Metal Using Ultrasonically Generated Microbubbles. Metals 2023, 13, 1648. https://doi.org/10.3390/met13101648
Saito Y, Nozawa H, Xing W, Makuta T. Porous Fabrication of White Metal Using Ultrasonically Generated Microbubbles. Metals. 2023; 13(10):1648. https://doi.org/10.3390/met13101648
Chicago/Turabian StyleSaito, Yuta, Hitoshi Nozawa, Wenjing Xing, and Toshinori Makuta. 2023. "Porous Fabrication of White Metal Using Ultrasonically Generated Microbubbles" Metals 13, no. 10: 1648. https://doi.org/10.3390/met13101648
APA StyleSaito, Y., Nozawa, H., Xing, W., & Makuta, T. (2023). Porous Fabrication of White Metal Using Ultrasonically Generated Microbubbles. Metals, 13(10), 1648. https://doi.org/10.3390/met13101648