Modeling and Analysis of Metal Liquid Film Flow Characteristics during Centrifugal Spray Forming
Abstract
:1. Introduction
2. Principle and Condition Assumption of Centrifugal Spray-Forming Technology
2.1. Formation Principle of Liquid Metal Film
2.2. Condition Hypothesis
- (a)
- The temperature of the liquid film on the surface of the centrifugal disc does not change.
- (b)
- Considering that the liquid film is thin, the internal pressure of the liquid film and the pressure on the surface of the liquid film are regarded as the environmental pressure.
- (c)
- The liquid film has a steady-state axisymmetric flow, so the velocity and pressure do not change with .
- (d)
- The axial velocity is much smaller than the radial and circumferential velocities, so the influence of the axial velocity of the liquid film is ignored.
- (e)
- There is no slip between the liquid film and the surface of the centrifugal disc, that is, the contact part of the liquid film and the centrifugal disc rotates with the centrifugal disc.
- (f)
- The gravity and other inertial forces on the liquid film on the centrifugal plate are neglected compared with the centrifugal force and viscous force.
3. Modeling of Liquid Film Flow Characteristics
4. Numerical Experiment
4.1. Model Validation
4.2. Numerical Calculation
5. Results and Discussion
5.1. Analysis and Discussion of Liquid Film Thickness
5.2. Analysis and Discussion of Average Radial Velocity of the Liquid Film
5.3. Analysis and Discussion of Circumferential Slip
5.4. Analysis and Discussion of Liquid Film Trajectory
5.5. The Relationship between Liquid Film Thickness and Trajectory Length
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
radial coordinate/() | |
circumferential coordinate/() | |
axial coordinate/() | |
volume of the fluid element/() | |
centrifugal force of the fluid element (vector)/() | |
centrifugal force (vector)/() | |
density of liquid metal/() | |
rotation angular velocity (vector)/() | |
circumferential velocity of the fluid element relative to the centrifugal disc(vector)/() | |
radial position (vector)/() | |
radial force of the fluid element/() | |
circumferential force of the fluid element/() | |
radial component of centrifugal force/() | |
circumferential component of centrifugal force/() | |
rotation angular velocity of the centrifugal disc/() | |
radial velocity of the fluid element relative to the centrifugal disc/() | |
circumferential velocity of the fluid element relative to the centrifugal disc/() | |
dynamic viscosity of the liquid/() | |
kinematic viscosity of the liquid/() | |
shear stress/() | |
liquid film thickness/() | |
volume flow rate of liquid/() | |
average radial velocity of the liquid film/() | |
average circumferential velocity of the liquid film/() | |
circumferential slip | |
Time from center to edge/() | |
trajectory length/() |
References
- Mandal, S.; Sadeghianjahromi, A.; Wang, C.-C. Experimental and numerical investigations on molten metal atomization techniques–A critical review. Adv. Powder Technol. 2022, 33, 103809. [Google Scholar] [CrossRef]
- Ravry, B.; Mathieu, A.; Bernard, F.; Demoisson, F. Atomization regime observation and characterization of an atomized pure zinc rod during centrifugal atomization using a LASER beam. Powder Technol. 2023, 415, 118139. [Google Scholar] [CrossRef]
- Hussain, S.; Cui, C.; Mädler, L.; He, L.; Uhlenwinkel, V. Effect of hot gas atomization on spray forming of steel tubes using a close-coupled atomizer (CCA). J. Mater. Process. Technol. 2020, 282, 116677. [Google Scholar] [CrossRef]
- Chourasiya, S.K.; Gautam, G. Enhancing the microstructure and tribological performance of spray formed Al alloy by cryorolling. Silicon 2021, 13, 2857–2868. [Google Scholar] [CrossRef]
- Rojas, O.; Muñoz, R.; Holguín, J.D.; López, M.E.; Ageorges, H.; Vargas, F. Porosity formation phenomena in glass particles atomised by oxyacetylene flame-spraying: Effect of feedstock powders and atomisation conditions. Ceram. Int. 2023, 49, 14512–14524. [Google Scholar] [CrossRef]
- Yin, C.; Lu, Z.; Wei, X.; Yan, B.; Yan, P. High Bending Strength Hypereutectic Al-22Si-0.2Fe-0.1Cu-Re Alloy Fabricated by Selective Laser Melting. Metals 2021, 11, 528. [Google Scholar] [CrossRef]
- Dash, S.S.; Chen, D. A Review on Processing–Microstructure–Property Relationships of Al-Si Alloys: Recent Advances in Deformation Behavior. Metals 2023, 13, 609. [Google Scholar] [CrossRef]
- Mantripragada, V.T.; Sarkar, S. Prediction of drop size from liquid film thickness during rotary disc atomization process. Chem. Eng. Sci. 2017, 158, 227–233. [Google Scholar] [CrossRef]
- Palanti, L.; Puggelli, S.; Langone, L.; Andreini, A.; Reveillon, J.; Duret, B.; Demoulin, F.X. An attempt to predict spray characteristics at early stage of the atomization process by using surface density and curvature distribution. Int. J. Multiph. Flow 2022, 147, 103879. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Y.; Zhang, G.; Yin, F.; Zhao, G.; Guo, H. Preparation and characterization of spherical diamond magnetic abrasive powder by atomization process. Diam. Relat. Mater. 2020, 102, 107658. [Google Scholar] [CrossRef]
- Cherdantsev, A.; Bobylev, A.; Guzanov, V.; Kvon, A.; Kharlamov, S. Measuring liquid film thickness based on the brightness level of the fluorescence: Methodical overview. Int. J. Multiph. Flow 2023, 168, 104570. [Google Scholar] [CrossRef]
- Wu, W.; Kong, S.; Xu, X.; Tao, J.; Li, C.; Wang, J.; Su, M.; Yang, H. Simultaneous measurement of liquid film thickness and temperature on metal surface. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 257, 119804. [Google Scholar] [CrossRef]
- Payri, R.; Salvador, F.J.; Carreres, M.; Moreno-Montagud, C. A computational methodology to account for the liquid film thickness evolution in Direct Numerical Simulation of prefilming airblast atomization. Int. J. Multiph. Flow 2023, 161, 104403. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Jin, Y.; Ouguang, Y.; Li, J. CFD simulation of liquid flow characteristics in a rotor-stator spinning disc reactor. J. Taiwan Inst. Chem. Eng. 2020, 115, 20–27. [Google Scholar] [CrossRef]
- Zhao, Y.Y. Analysis of flow development in centrifugal atomization: Part I. Film thickness of a fully spreading melt. Model. Simul. Mater. Sci. Eng. 2004, 12, 959–971. [Google Scholar] [CrossRef]
- Zhao, Y.Y. Analysis of flow development in centrifugal atomization: Part II. Disintegration of a non-fully spreading melt. Model. Simul. Mater. Sci. Eng. 2004, 12, 973–983. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Jacobs, M.H.; Dowson, A.L. Liquid flow on a rotating disk prior to centrifugal atomization and spray deposition. Metall. Mater. Trans. B 1998, 29, 1357–1369. [Google Scholar] [CrossRef]
- Wang, D.; Ling, X.; Peng, H. Theoretical analysis of free-surface film flow on the rotary granulating disk in waste heat recovery process of molten slag. Appl. Therm. Eng. 2014, 63, 387–395. [Google Scholar] [CrossRef]
- Wang, D.; Ling, X.; Peng, H. Simulation of ligament mode breakup of molten slag by spinning disk in the dry granulation process. Appl. Therm. Eng. 2015, 84, 437–447. [Google Scholar] [CrossRef]
- Sisoev, G.M.; Matar, O.K.; Lawrence, C.J. Axisymmetric wave regimes in viscous liquid film flow over a spinning disk. J. Fluid Mech. 2003, 495, 385–411. [Google Scholar] [CrossRef]
- Ogura, T.; Matsumoto, T.; Miwa, S.; Mori, M.; Hibiki, T. Experimental study on molten metal spreading and deposition behaviors. Ann. Nucl. Energy 2018, 118, 353–362. [Google Scholar] [CrossRef]
- Li, P.; Wei, S.; Lei, X.; Yang, L.; Sun, B. Study on Flight Dynamics and Heat Transfer Solidification of Metal Droplets during Centrifugal Spray Deposition Forming Process. Metals 2023, 13, 1446. [Google Scholar] [CrossRef]
- Matar, O.K.; Lawrence, C.J.; Sisoev, G.M. The flow of thin liquid films over spinning disks: Hydrodynamics and mass transfer. Phys. Fluids 2005, 17, 412. [Google Scholar] [CrossRef]
- Myers, T.G.; Lombe, M. The importance of the Coriolis force on axisymmetric horizontal rotating thin film flows. Chem. Eng. Process. Process Intensif. 2005, 45, 90–98. [Google Scholar] [CrossRef]
- Leshev, I.; Peev, G. Film flow on a horizontal rotating disk. Chem. Eng. Process. Process Intensif. 2003, 42, 925–929. [Google Scholar] [CrossRef]
- Ho, K.H.; Zhao, Y.Y. Modelling thermal development of liquid metal flow on rotating disc in centrifugal atomisation. Mater. Sci. Eng. A 2004, 365, 336–340. [Google Scholar] [CrossRef]
- Sun, H.; Chen, G.; Wang, L.; Wang, F. Ligament and Droplet Generation by Oil Film on a Rotating Disk. Int. J. Aerosp. Eng. 2015, 2015, 1–14. [Google Scholar] [CrossRef]
- Zykova, A.; Martyushev, N.; Skeeba, V.; Zadkov, D.; Kuzkin, A. Influence of W addition on microstructure and mechanical properties of Al-12% Si alloys. Materials 2019, 12, 981. [Google Scholar] [CrossRef]
- Li, Q.; Xia, T.; Lan, Y.; Zhao, W.; Fan, L.; Li, P. Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al–20% Si alloy. J. Alloys Compd. 2013, 562, 25–32. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Guo, Z.; Li, L.; Shan, Q.; Li, Z. Multi-Phase Structure Control and Interfacial Investigation of TiB2/Hypereutectic Al-Si Alloy. Metals 2023, 13, 933. [Google Scholar] [CrossRef]
Working Fluid | ||||
---|---|---|---|---|
Water | 0.2 | 10.47 | 5.33 | 1.01 |
30% glycerol | 0.2 | 10.47 | 5.33 | 6.25 |
50% glycerol | 0.2 | 10.47 | 5.33 | 10.63 |
Element Name | Si | Fe | Cu | Mn | Mg | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|
Context | 17.0 | 0.5 | 4.5 | 0.1 | 0.55 | 0.1 | 0.2 | Balance |
0.1 | 600 | 3.77 | 3.80 |
0.1 | 800 | 6.28 | 5.70 |
0.1 | 1000 | 8.80 | 7.60 |
0.1 | 1200 | 12.6 | 9.47 |
0.1 | 1400 | 16.3 | 11.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Wei, S.; Lei, X.; Yang, L.; Sun, B.; Tong, S. Modeling and Analysis of Metal Liquid Film Flow Characteristics during Centrifugal Spray Forming. Metals 2023, 13, 1687. https://doi.org/10.3390/met13101687
Li P, Wei S, Lei X, Yang L, Sun B, Tong S. Modeling and Analysis of Metal Liquid Film Flow Characteristics during Centrifugal Spray Forming. Metals. 2023; 13(10):1687. https://doi.org/10.3390/met13101687
Chicago/Turabian StyleLi, Peng, Shizhong Wei, Xianqing Lei, Lu Yang, Bo Sun, and Shuaiwu Tong. 2023. "Modeling and Analysis of Metal Liquid Film Flow Characteristics during Centrifugal Spray Forming" Metals 13, no. 10: 1687. https://doi.org/10.3390/met13101687
APA StyleLi, P., Wei, S., Lei, X., Yang, L., Sun, B., & Tong, S. (2023). Modeling and Analysis of Metal Liquid Film Flow Characteristics during Centrifugal Spray Forming. Metals, 13(10), 1687. https://doi.org/10.3390/met13101687