Effect of Plastic Deformation and Acidic Solution on the Corrosion Behavior of Ti-6Al-4V ELI Titanium Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Evolution
3.2. Corrosion Behavior of Deformed Ti-6Al-4V ELI
4. Conclusions
- During the tensile deformation process, some α grains underwent rotation to coordinate the deformation. The rotation of these grains resulted in changes in grain orientation, which in turn caused variations in the texture components, and texture strength decreased. Deformation twins could also form within the grains, with the twinning generated during deformation being {10–12}<−1011> tensile twins;
- The titanium alloy without any tensile strain exhibited the best corrosion resistance, while the titanium alloy subjected to the highest tensile strain showed the poorest corrosion resistance in acidic solutions. Plastic deformation and acidification both led to a decrease in the corrosion resistance of the alloy’s passive film on the surface;
- Plastic deformation had a greater effect on the reduction in the impedance of the passive film compared to the acidification of the solution. Due to the interaction of plastic deformations and the acidic environment, the samples failed to form a stable passive film at low anodic potential.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, S.K.; Song, G.L.; Li, Z.X.; Wang, H.N.; Zheng, D.J.; Cao, F.Y.; Horynova, M.; Horynova, M.S.; Zhou, L. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. J. Mater. Sci. Technol. 2018, 34, 421–435. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Dutta, B.; Froes, F.S. The additive manufacturing (AM) of titanium alloys. Adv. Mater. Res. 2017, 72, 96–106. [Google Scholar] [CrossRef]
- Meng, J.K.; Chen, X.G.; Jiang, J.T.; Liu, L. Investigation on anisotropic mechanical behavior of Ti-6Al-4V alloy via schmid factor and kernel average misorientation distribution. Metals 2022, 13, 89. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, K.; Li, H.H.; Wen, X.; Xin, R.L. Effect of content and configuration of equiaxed α and lamellar α on deformation mechanism and tensile properties of a near-α titanium alloy. Mater. Sci. Eng. A 2023, 877, 145192. [Google Scholar] [CrossRef]
- Ma, Y.; Xue, Q.; Wang, H.; Huang, S.; Qiu, J.; Feng, X.; Lei, J.; Yang, R. Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure. Mater. Charact. 2017, 132, 338–347. [Google Scholar] [CrossRef]
- Lausmaa, J. Surface spectroscopic characterization of titanium implant materials. Spectrosc. Relat. Phenom. 1996, 81, 343–361. [Google Scholar] [CrossRef]
- Guo, W.Y.; Sun, J.; Wu, J.S. Electrochemical and XPS studies of corrosion behavior of Ti–23Nb–0.7 Ta–2Zr–O alloy in Ringer’s solution. Mater. Chem. Phys. 2009, 113, 816–820. [Google Scholar] [CrossRef]
- Blanco-Pinzon, C.; Liu, Z.; Voisey, K.; Bonilla, F.A.; Skeldon, P.; Thompson, G.E.; Piekoszewski, J.; Chmielewski, A.G. Excimer laser surface alloying of titanium with nickel and palladium for increased corrosion resistance. Corros. Sci. 2005, 47, 1251–1269. [Google Scholar] [CrossRef]
- Wang, Z.B.; Hu, H.X.; Zheng, Y.G.; Ke, W.; Qiao, Y.X. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corros. Sci. 2016, 103, 50–65. [Google Scholar] [CrossRef]
- Su, B.X.; Luo, L.S.; Wang, B.B.; Su, Y.Q.; Wang, L.; Ritchie, R.O.; Guo, E.Y.; Li, T.; Yang, H.M.; Huang, H.G.; et al. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy. J. Mater. Sci. Technol. 2021, 62, 234–248. [Google Scholar] [CrossRef]
- Guo, W.Y.; Sun, J.; Wu, J.S. Effect of deformation on corrosion behavior of Ti–23Nb–0.7 Ta–2Zr–O alloy. Mater. Charact. 2009, 60, 173–177. [Google Scholar] [CrossRef]
- Krawiec, H.; Vignal, V.; Loch, J.; Erazmus-Vignal, P. Influence of plastic deformation on the microstructure and corrosion behaviour of Ti–10Mo–4Zr and Ti–6Al–4V alloys in the Ringer’s solution at 37 °C. Corros. Sci. 2015, 96, 160–170. [Google Scholar] [CrossRef]
- Gao, F.; Sun, Z.; Yang, S.; Jiang, P.; Liao, Z. Stress corrosion characteristics of electron beam welded titanium alloys joints in NaCl solution. Mater. Charact. 2022, 192, 112126. [Google Scholar] [CrossRef]
- Chi, G.; Jiang, B.; Yi, D.; Yang, L.; Pan, S.; Liu, H.; Feng, C.; Mao, W. Effect of lamellar α on the stress corrosion cracking of Ti-6Al-4 V alloy in simulated oilfield brine. Mater. Charact. 2021, 174, 111000. [Google Scholar] [CrossRef]
- Li, Y.; You, Y.; Lv, X. Comparative study on the crack growth behaviours of E690 steel and heat-affected zone microstructures under cathodic potential in artificial seawater based on mechano-electrochemical effect at crack tip. Corros. Sci. 2022, 198, 110103. [Google Scholar] [CrossRef]
- Renner, F.U.; Ankah, G.N.; Bashir, A.; Ma, D.; Biedermann, P.U.; Shrestha, B.R.; Nellessen, M.; Khorashadizadeh, A.; Losada-Pérez, P.; Duarte, M.J.; et al. Star-Shaped Crystallographic Cracking of Localized Nanoporous Defects. Adv. Mater. 2015, 27, 4877–4882. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.E.; Lima, L.; Lima, C.R.; Zavaglia, C.A.; Freire, C.M. Effects of pH on the electrochemical behaviour of titanium alloys for implant applications. J. Mater. Sci. Mater. Med. 2009, 20, 549–552. [Google Scholar] [CrossRef]
- Qarni, M.J.; Sivaswamy, G.; Rosochowski, A.; Boczkal, S. On the evolution of microstructure and texture in commercial purity titanium during multiple passes of incremental equal channel angular pressing (I-ECAP). Mater. Sci. Eng. A 2017, 699, 31–47. [Google Scholar] [CrossRef]
- Saravanan, K.; Manikandan, P.; Jalaja, K.; Pai, N.; Sharma, V.M.J.; Narayana Murty, S.V.S.; Rao, G.S.; Venugopal, A. Effect of Uniaxial Pre-strain on Tensile, Work Hardening, Fracture Toughness, and Fatigue Crack Growth Rate of Titanium Alloy Ti–6Al–4V. Metall. Mater. Trans. A 2023, 54, 3603–3619. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X.; Jia, Y.; Zhang, X.; Ma, M.; Liu, R.; Jing, Q. Novel Anisotropic Ductility of a High Strength Annealed Ti-20Zr-6.5 Al-4V Alloy. Materials 2018, 11, 529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, X.; Zhang, X.Y.; Jia, Y.Z.; Ma, M.Z.; Liu, R.P.; Jing, Q. Effects of microstructure on the mechanical properties of a high-strength Ti20Zr6. 5Al4V alloy. J. Alloys Compd. 2018, 735, 2133–2141. [Google Scholar] [CrossRef]
- Prakash, D.L.; Ding, R.; Moat, R.J.; Jones, I.; Withers, P.J.; Da Fonseca, J.Q.; Preuss, M. Deformation twinning in Ti-6Al-4 V during low strain rate deformation to moderate strains at room temperature. Mater. Sci. Eng. A 2010, 527, 5734–5744. [Google Scholar] [CrossRef]
- Lainé, S.J.; Knowles, K.M.; Rugg, D. Very high strain rate deformation twinning behaviour of Ti–6Al–4V. Materialia 2020, 12, 100762. [Google Scholar] [CrossRef]
- Zhang, W.D.; Yang, P.; Liang, X.P.; Cao, Y.K.; Ouyang, S.H.; Liu, Y.; Wu, Z.G. Strength-ductility trade-off deviation in a pre-deformed metastable β titanium alloy. J. Alloys Compd. 2020, 835, 155332. [Google Scholar] [CrossRef]
- Zang, M.C.; Niu, H.Z.; Zhang, H.R.; Tan, H.; Zhang, D.L. Cryogenic tensile properties and deformation behavior of a superhigh strength metastable beta titanium alloy Ti–15Mo–2Al. Mater. Sci. Eng. A 2021, 817, 141344. [Google Scholar] [CrossRef]
- Gong, J.; Wilkinson, A.J. Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams. Acta Mater. 2009, 57, 5693–5705. [Google Scholar] [CrossRef]
- Leon, A.; Levy, G.K.; Ron, T.; Shirizly, A.; Aghion, E. The effect of strain rate on stress corrosion performance of Ti6Al4V alloy produced by additive manufacturing process. J. Mater. Res. Technol. 2020, 9, 4097–4105. [Google Scholar] [CrossRef]
- De Fenzo, A.; Scherillo, F.; Astarita, A.; Testani, C.; Squillace, A.; Bellucci, F. Influence of hot deformation on the electrochemical behavior of natural oxides of hipped Ti6Al4V. Corros. Sci. 2015, 94, 79–87. [Google Scholar] [CrossRef]
- Li, Y.X.; Pei, Z.; Zaman, B.; Zhang, Y.X.; Yuan, H.Z.; Cao, B. Effects of plastic deformations on the electrochemical and stress corrosion cracking behaviors of TC2 titanium alloy in simulated seawater. Mater. Res. Express 2018, 5, 116516. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Sun, J.; Zhou, G.; Yu, X.L.; Wang, C.; Gao, J. Influence of Phase Composition on Stress-Corrosion Cracking of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy in 3.5% NaCl Solution. Crystals 2022, 12, 1794. [Google Scholar] [CrossRef]
- Ansari, G.; Fattah-Alhosseini, A. On the passive and semiconducting behavior of severely deformed pure titanium in Ringer’s physiological solution at 37 °C: A trial of the point defect model. Mater. Sci. Eng. C 2017, 75, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; He, X.; Lv, Y.; Wu, M.; He, X.; Qu, X. Selective laser sintered porous Ti–(4–10) Mo alloys for biomedical applications: Structural characteristics, mechanical properties and corrosion behaviour. Corros. Sci. 2015, 95, 117–124. [Google Scholar] [CrossRef]
- Nakhaie, D.; Davoodi, A.; Ebrahimi, G.R. The Influence of cold plastic deformation on passivity of Ti-6Al-4V alloy studied by electrochemical and local probing techniques. Corrosion 2016, 72, 110–118. [Google Scholar]
- Yang, Z.; Yu, M.; Han, C.; Zhao, Z.J.; Jia, X.; Zhao, M.Y.; Li, S.M.; Liu, J. Evolution and corrosion resistance of passive film with polarization potential on Ti-5Al-5Mo-5V-1Fe-1Cr alloy in simulated marine environments. Corros. Sci. 2023, 221, 111334. [Google Scholar] [CrossRef]
- Li, D.G.; Wang, J.D.; Chen, D.R.; Liang, P. Influence of passive potential on the electronic property of the passive film formed on Ti in 0.1 M HCl solution during ultrasonic cavitation. Ultrason. Sonochem. 2016, 29, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Zhu, Y.C. The effect of film formation conditions on the structure and composition of anodic oxide films on titanium. Corros. Sci. 1995, 37, 253–270. [Google Scholar] [CrossRef]
- Munirathinam, B.; Narayanan, R.; Neelakantan, L. Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions. Thin Solid Films 2016, 598, 260–270. [Google Scholar] [CrossRef]
- Wang, J.; Song, S.; Li, D. Diffusivity of a point defect in the passive film on Ti with plastic deformation in 3.5% NaCl solution. Thin Solid Films 2022, 754, 139304. [Google Scholar] [CrossRef]
- Krawiec, H.; Vignal, V.; Schwarzenboeck, E.; Banas, J. Role of plastic deformation and microstructure in the micro-electrochemical behaviour of Ti–6Al–4V in sodium chloride solution. Electrochim. Acta 2013, 104, 400–406. [Google Scholar] [CrossRef]
- Scully, J.C. Kinetic features of stress-corrosion cracking. Corros. Sci. 1967, 7, 197–207. [Google Scholar] [CrossRef]
- Liu, R.; Cui, Y.; Zhang, B.; Liu, L.; Wang, F. Unveiling the effect of hydrostatic pressure on the passive films of the deformed titanium alloy. Corros. Sci. 2021, 190, 109705. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, Y.; Ma, A.; Zhang, L.; Zheng, Y. Study of the Passivation and Repassivation Behavior of Pure Titanium in 3.5 wt.% NaCl Solution and 6M HNO3 Solution. Corros. Sci. 2023, 224, 111538. [Google Scholar] [CrossRef]
Sample | pH | OCP (V) |
---|---|---|
0% strain | 7 | −0.20 ± 0.11 |
1.5 | 0.13 ± 0.08 | |
5% strain | 7 | −0.17 ± 0.03 |
1.5 | 0.11 ± 0.9 | |
10% strain | 7 | −0.18 ± 0.12 |
1.5 | 0.16 ± 0.21 |
Sample | pH | Rs | CPE1 × 10−5 | n1 | Rf | CPE2 × 10−5 | n2 | Rct | χ2 |
---|---|---|---|---|---|---|---|---|---|
(Ω·cm2) | (Ω−1·cm−2·sn) | (MΩ·cm2) | (Ω−1·cm−2·sn) | (MΩ·cm2) | ×10−3 | ||||
0% strain | 7 | 28.03 ± 0.53 | 2.74 ± 1.03 | 0.91 ± 0.01 | 1.73 ± 0.07 | 2.24 ± 0.61 | 0.97 ± 0.01 | 4.65 ± 0.61 | 0.23 |
1.5 | 29.76 ± 1.02 | 4.26 ± 0.99 | 0.93 ± 0.01 | 0.42 ± 0.08 | 0.73 ± 0.39 | 0.83 ± 0.02 | 1.04 ± 0.55 | 0.25 | |
5% strain | 7 | 26.09 ± 0.69 | 5.03 ± 0.24 | 0.90 ± 0.02 | 0.78 ± 0.04 | 0.22 ± 0.07 | 0.87 ± 0.02 | 2.14 ± 0.67 | 1.24 |
1.5 | 24.51 ± 0.93 | 2.06 ± 0.54 | 0.85 ± 0.02 | 0.10 ± 0.02 | 1.07 ± 0.02 | 0.85 ± 0.01 | 7.09 ± 0.73 | 0.65 | |
10% strain | 7 | 23.89 ± 0.84 | 5.62 ± 0.91 | 0.91 ± 0.01 | 0.18 ± 0.02 | 1.41 ± 0.51 | 0.88 ± 0.01 | 0.29 ± 0.85 | 0.34 |
1.5 | 22.67 ± 2.07 | 4.83 ± 0.41 | 0.90 ± 0.02 | 0.28 ± 0.01 | 8.22 ± 0.22 | 0.85 ± 0.01 | 1.14 ± 0.24 | 0.77 |
Sample | pH | Ecorr (V) | Icorr (μA/cm2) |
---|---|---|---|
0% strain | 7 | −0.27 ± 0.39 | 0.092 ± 0.21 |
1.5 | −0.25 ± 0.37 | 0.025 ± 0.19 | |
5% strain | 7 | −0.35 ± 0.46 | 0.040 ± 0.28 |
1.5 | −0.05 ± 0.16 | 0.031 ± 0.01 | |
10% strain | 7 | −0.37 ± 0.49 | 0.058 ± 0.31 |
1.5 | 0.09 ± 0.02 | 0.116 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Xu, C.; Cai, Y.; Zhang, B. Effect of Plastic Deformation and Acidic Solution on the Corrosion Behavior of Ti-6Al-4V ELI Titanium Alloy. Metals 2023, 13, 1740. https://doi.org/10.3390/met13101740
Zheng X, Xu C, Cai Y, Zhang B. Effect of Plastic Deformation and Acidic Solution on the Corrosion Behavior of Ti-6Al-4V ELI Titanium Alloy. Metals. 2023; 13(10):1740. https://doi.org/10.3390/met13101740
Chicago/Turabian StyleZheng, Xuyong, Chen Xu, Yi Cai, and Binbin Zhang. 2023. "Effect of Plastic Deformation and Acidic Solution on the Corrosion Behavior of Ti-6Al-4V ELI Titanium Alloy" Metals 13, no. 10: 1740. https://doi.org/10.3390/met13101740
APA StyleZheng, X., Xu, C., Cai, Y., & Zhang, B. (2023). Effect of Plastic Deformation and Acidic Solution on the Corrosion Behavior of Ti-6Al-4V ELI Titanium Alloy. Metals, 13(10), 1740. https://doi.org/10.3390/met13101740