Effect of Composition and Thermal Treatments on Mechanical Properties and Applications of Quenching and Partitioning Steels
Abstract
:1. Introduction
2. Influence of Chemical Composition and Heat Treatment on Mechanical Properties
3. Mechanical Properties and Applications
4. Sustainability
- The blast furnace/basic oxygen furnace (BF-BOF) process, which uses coke and coal as energy and reducing agents;
- The electric arc furnace (EAF) process by melting ferrous scraps.
5. Current Research Trend of Q&P Steels
- The newly formed martensite during high strain rate deformation is softer than that formed at a low strain rate. This can lead to a lower work hardening rate and negative SRS [99].
6. Conclusions
- It is possible to produce Q&P steels with a specific microstructure, showing superior mechanical properties, by using alloy compositions that can be processed with the current level of technology.
- Q&P steels with different chemical compositions have to be processed by specific heat treatments, from annealing up to partitioning, in order to avoid too much RA volume fraction and, consequently, a low yield strength value. At the same time, it is fundamental to avoid a very stable RA, otherwise it returns a minor TRIP effect and therefore low ductility. Steel B has the most promising chemical composition in which changing the quenching temperature between 125 and 175 °C, the final behavior in terms of mechanical properties is also stable, showing high formability coupled with high tensile strength, which is needed for several automotive components.
- The AHSSs, and thus the Q&P steels, are the best sustainable choice for automotive lightweighting. Nevertheless, it is necessary to further improve the processing to be able to produce such steels using the EAF metallurgical route instead of BF-BOF, which is more polluting. For Q&P steel, probably the first step of decarbonization will be the implementation of CCUS that allows for the use of current blast furnace technology but can capture the emissions. The second step would be the implementation of EAF to produce this steel family by carefully controlling the scrap used and establishing a closed loop with the automotive industry, who are using high purity steels.
- A possible approach is the development of a closed loop between the automotive industry and EAF steelmakers, in order to return the stamping scraps to be re-melted and reused to produce origin grade Q&P steels, without a drop in the steel degrading. To do so, a specific and well-organized supply chain should be put in place to guarantee the correct flow of such processes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Environment Agency. Decarbonising Road Transport the Role of Vehicles. In Fuels and Transport Demand; Publications Office of the European Union: Luxembourg City, Luxemburg, 2022; ISBN 978-92-9480-473-0. [Google Scholar] [CrossRef]
- Speer, J.; Matlock, D.K.; de Cooman, B.C.; Schroth, J.G. Carbon Partitioning into Austenite after Martensite Transformation. Acta Mater. 2003, 51, 2611–2622. [Google Scholar] [CrossRef]
- Edmonds, D.V.; He, K.; Rizzo, F.C.; de Cooman, B.C.; Matlock, D.K.; Speer, J.G. Quenching and Partitioning Martensite-A Novel Steel Heat Treatment. Mater. Sci. Eng. A 2006, 438–440, 25–34. [Google Scholar] [CrossRef]
- Moor, E.D.; Speer, J.G.; Matlock, D.K.; Kwak, J.-H.; Lee, S.-B. Effect of Carbon and Manganese on the Quenching and Partitioning Response of CMnSi Steels. ISIJ Int. 2011, 51, 137–144. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Liu, R.D.; Huang, M.X. Benefits of intercritical annealing in quenching and partitioning steel. Metall. Mater. Trans. A 2018, 49, 1460–1464. [Google Scholar] [CrossRef]
- Santofimia, M.J.; Zhao, L.; Sietsma, J. Overview of mechanisms involved during the quenching and partitioning process in steels. Metall. Mater. Trans. A 2011, 42, 3620–3626. [Google Scholar] [CrossRef]
- Xia, P.; Vercruysse, F.; Celada-Casero, C.; Verleysen, P.; Petrov, R.; Sabirov, I.; Molina-Aldareguia, J.; Smith, A.; Linke, B.; Thiessen, R.; et al. Effect of Alloying and Microstructure on Formability of Advanced High-Strength Steels Processed via Quenching and Partitioning. Mater. Sci. Eng. A 2022, 831, 142217. [Google Scholar] [CrossRef]
- Carpio, M.; Calvo, J.; García, O.; Pedraza, J.P.; Cabrera, J.M. Heat Treatment Design for a Qp Steel: Effect of Partitioning Temperature. Metals 2021, 11, 1136. [Google Scholar] [CrossRef]
- Tan, X.; Ponge, D.; Lu, W.; Xu, Y.; Yang, X.; Rao, X.; Wu, D.; Raabe, D. Carbon and strain partitioning in a quenched and partitioned steel containing ferrite. Acta Mater. 2019, 165, 561–576. [Google Scholar] [CrossRef]
- Jacques, P.; Girault, E.; Catlin, T.; Geerlofs, N.; Kop, T.; Van der Zwaag, S.; Delannay, F. Bainite Transformation of Low Carbon Mn-Si TRIP-Assisted Multiphase Steels: Influence of Silicon Content on Cementite Precipitation and Austenite Retention. Mater. Sci. Eng. A 1999, 273–275, 475–479. [Google Scholar] [CrossRef]
- Clarke, A.J.; Speer, J.G.; Miller, M.K.; Hackenberg, R.E.; Edmonds, D.V.; Matlock, D.K.; Rizzo, F.C.; Clarke, K.D.; De Moor, E. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment. Acta Mater. 2008, 56, 16–22. [Google Scholar] [CrossRef]
- Traint, S.; Pichler, A.; Hauzenberger, K.; Stiaszny, P.; Werner, E. Influence of silicon, aluminium, phosphorus and copper on the phase transformations of low alloyed TRIP-steels. Steel Res. 2002, 73, 259–266. [Google Scholar] [CrossRef]
- Song, E.J.; Suh, D.W.; Bhadeshia, H.K.D.H. Oxidation of silicon containing steel. Ironmak. Steelmak. 2012, 39, 599–604. [Google Scholar] [CrossRef]
- Vercruysse, F.; Celada-Casero, C.; Linke, B.M.; Verleysen, P.; Petrov, R.H. The effect of Nb on the strain rate and temperature dependent behaviour of quenching & partitioning steels. Mater. Sci. Eng. 2021, 800, 140293. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, H.; Misra, R.D.K.; Wang, C. Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel. Mater. Sci. Eng. 2015, 641, 242–248. [Google Scholar] [CrossRef]
- Wang, X.D.; Xu, W.Z.; Guo, Z.H.; Wang, L.; Rong, Y.H. Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching-partitioning-tempering process. Mater. Sci. Eng. 2010, 527, 3373–3378. [Google Scholar] [CrossRef]
- Peng, F.; Xu, Y.; Gu, X.; Wang, Y.; Liu, X.; Li, J. The relationships of microstructure-mechanical properties in quenching and partitioning (Q&P) steel accompanied with microalloyed carbide precipitation. Mater. Sci. Eng. 2018, 723, 247–258. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, K.; Wang, Y.; Gu, J.F.; Rong, Y.H. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process. Mater. Sci. Eng. 2011, 528, 8006–8012. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, P.; Li, W.; Guo, Z.; Rong, Y. Ultrahigh strength-ductility steel treated by a novel quenching-partitioning-tempering process. Mater. Sci. Eng. 2014, 619, 205–211. [Google Scholar] [CrossRef]
- Nyyssönen, T.; Oja, O.; Jussila, P.; Saastamoinen, A.; Somani, M.; Peura, P. Quenching and Partitioning of Multiphase Aluminum-Added Steels. Metals 2019, 9, 373. [Google Scholar] [CrossRef]
- Mishra, S.; Dalai, R.P. Effect of Quenching and Partitioning Treatment on Low Carbon Medium Manganese Alloyed Steels-A Short Review. Mater. Today Proc. 2020, 43, 593–596. [Google Scholar] [CrossRef]
- Di Schino, A.; Emilio Di Nunzio, P.; Maria Cabrera, J. Effect of Quenching & Partitioning Process on a Low Carbon Steel. Adv. Mater. Lett. 2017, 8, 641–644. [Google Scholar] [CrossRef]
- Wang, J.; Qian, R.; Yang, X.; Zhong, Y.; Shang, C. Effect of segregation on the microstructure and properties of a quenching and partitioning steel. Mater. Lett. 2022, 325, 132815. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Zhao, G.; Xu, D.M.; Mao, X.P.; Bao, S.Q.; Yang, G.W. Comparative Study on Microstructures and Mechanical Properties of Q&P Steels Prepared with Hot-Rolled and Cold-Rolled C–Si–Mn Sheets. J. Mater. Res. Technol. 2022, 20, 1226–1242. [Google Scholar] [CrossRef]
- Kaar, S.; Krizan, D.; Schneider, R.; Sommitsch, C. Impact of Si and Al on Microstructural Evolution and Mechanical Properties of Lean Medium Manganese Quenching and Partitioning Steels. Steel Res. Int. 2020, 91, 2000181. [Google Scholar] [CrossRef]
- Du, Y.; Gao, X.; Lan, L.; Qi, X.; Wu, H.; Du, L.; Misra, R.D.K. Hydrogen Embrittlement Behavior of High Strength Low Carbon Medium Manganese Steel under Different Heat Treatments. Int. J. Hydrogen Energy 2019, 44, 32292–32306. [Google Scholar] [CrossRef]
- Yang, J.; Huang, F.; Guo, Z.; Rong, Y.; Chen, N. Effect of Retained Austenite on the Hydrogen Embrittlement of a Medium Carbon Quenching and Partitioning Steel with Refined Microstructure. Mater. Sci. Eng. 2016, 665, 76–85. [Google Scholar] [CrossRef]
- Vercruysse, F.; Claeys, L.; Depover, T.; Verleysen, P.; Petrov, R.H.; Verbeken, K. The Effect of Nb on the Hydrogen Embrittlement Susceptibility of Q&P Steel under Static and Dynamic Loading. Mater. Sci. Eng. 2022, 852, 143652. [Google Scholar] [CrossRef]
- Ding, W.; Gong, Y.; Lu, Q.; Wang, J.; Wang, Z.; Li, W.; Jin, X. Improve Bendability of a Cr-Alloyed Press-Hardening Steel through an in-Line Quenching and Non-Isothermal Partitioning Process. J. Manuf. Process. 2022, 84, 481–493. [Google Scholar] [CrossRef]
- Bouaziz, O.; Zurob, H.; Huang, M. Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res. Int. 2013, 84, 937–947. [Google Scholar] [CrossRef]
- Pierman, A.-P.; Bouaziz, O.; Pardoen, T.; Jacques, P.; Brassart, L. The influence of microstructure and composition on the plastic behaviour of dual-phase steels. Acta Mater. 2014, 73, 298–311. [Google Scholar] [CrossRef]
- Wu-rong, W.; Chang-wei, H.; Zhong-hua, Z.; Xi-cheng, W. The limit drawing ratio and formability prediction of advanced high strength dual-phase steels. Mater. Des. 2011, 32, 3320–3327. [Google Scholar] [CrossRef]
- Wang, L.; Speer, J.G. Quenching and Partitioning Steel Heat Treatment. Metallogr. Microstruct. Anal. 2013, 2, 268–281. [Google Scholar] [CrossRef]
- Schwindta, C.D.; Stoutb, M.; Iurmana, L.; Signorelli, J.W. Forming Limit Curve Determination of a DP-780 Steel Sheet. Procedia Mater. Sci. 2015, 8, 978–985. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kawano, O.; Tanaka, Y. Fracture Mechanical Study on Edge Flange-ability of High Tensile-strength Steel Sheets. In Proceedings of the Materials Science & Technology Conference, Pittsburgh, PA, USA, 25–29 October 2009. [Google Scholar]
- Casellas, D.; Lara, A.; Frómeta, D.; Gutiérrez, D.; Molas, S.; Pérez, L.; Rehrl, J.; Suppan, C. Fracture Toughness to Understand Stretch-Flangeability and Edge Cracking Resistance in AHSS. Metall. Mater. Trans. 2017, 48, 86–94. [Google Scholar] [CrossRef]
- Frómeta, D.; Tedesco, M.M.; Calvo, J.; Lara, A.; Molas, S.; Casellas, D. Assessing edge cracking resistance in AHSS automotive parts by the Essential Work of Fracture methodology. J. Phys. Conf. Ser. 2017, 896, 012102. [Google Scholar] [CrossRef]
- Frómeta, D.; Lara, A.; Parareda, S.; Casellas, D. Evaluation of Edge Formability in High Strength Sheets Through a Fracture Mechanics Approach. In Proceedings of the AIP Conference, Vitoria-Gasteiz, Spain, 8–10 May 2019. [Google Scholar]
- Frómeta, D.; Lara, A.; Grifé, L.; Dieudonné, T.; Dietsch, P.; Rehrl, J.; Suppan, C.; Casellas, D.; Calvo, J. Fracture resistance of advanced high strength steel sheets for automotive applications. Metall. Mater. Trans. 2021, 52, 840–856. [Google Scholar] [CrossRef]
- Fonstein, N.; Jun, H.J.; Huang, G.; Sriram, S.; Yan, B. Effect of Bainite on Mechanical Properties of Multiphase Ferrite-Bainite-Martensite Steels. In Proceedings of the Materials Science & Technology Conference, Columbus, OH, USA, 16–20 October 2011. [Google Scholar]
- Yoon, J.I.; Jung, J.; Joo, S.H.; Song, T.J.; Chin, K.G.; Seo, M.H.; Kim, S.J.; Lee, S.; Kim, H.S. Correlation between fracture toughness and stretch-flangeability of advanced high strength steels. Matter. Lett. 2016, 180, 322–326. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Jiang, Z.; Price, L. Retrospective and prospective analysis of the trends of energy use in Chinese iron and steel industry. J. Clean. Prod. 2014, 74, 105–118. [Google Scholar] [CrossRef]
- Morfeldt, J.; Nijs, W.; Silveira, S. The impact of climate targets on future steel production–an analysis based on a global energy system model. J. Clean. Prod. 2015, 103, 469–482. [Google Scholar] [CrossRef]
- Xuan, Y.; Yue, Q. Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry. Resour. Conserv. Recycl. 2017, 120, 186–198. [Google Scholar] [CrossRef]
- World Steel Association, 2022. World Steel in Figures 2022. Available online: https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022/ (accessed on 31 August 2023).
- Li, Z.; Hanaoka, T. Plant-Level Mitigation Strategies Could Enable Carbon Neutrality by 2060 and Reduce Non-CO2 Emissions in China’s Iron and Steel Sector. One Earth 2022, 5, 932–943. [Google Scholar] [CrossRef]
- Cariou, P.; Parola, F.; Notteboom, T. Towards low carbon global supply chains: A multi-trade analysis of CO2 emission reductions in container shipping. Int. J. Prod. Econ. 2019, 208, 17–28. [Google Scholar] [CrossRef]
- Mersin, K.; Bayirhan, I.; Gazioglu, C. Review of CO2 emission and reducing methods. Therm. Sci. 2019, 23, 2073–2078. [Google Scholar] [CrossRef]
- Nocito, F.; Dibenedetto, A. Atmospheric CO2 mitigation technologies: Carbon capture utilization and storage (CCUS). Curr. Opin. Green Sust. 2019, 19, 34–43. [Google Scholar] [CrossRef]
- Valderrama, M.A.; Putten, R.J.; Gruter, G.M. The potential of oxalic—And glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization—CCU). Eur. Polym. J. 2019, 119, 445–468. [Google Scholar] [CrossRef]
- Leflay, H.; Pandhal, J.; Brown, S. Direct measurements of CO2 capture are essential to assess the technical and economic potential of algal-CCUS. J. CO2 Util. 2021, 52, 101657. [Google Scholar] [CrossRef]
- Global CCS Institute, 2020. The Global Status of CCS 2020. Available online: https://www.globalccsinstitute.com/wp-content/uploads/2021/03/Global-Status-of-CCS-Report-English.pdf (accessed on 31 August 2023).
- Karali, N.; Xu, T.; Sathaye, J. Developing long-term strategies to reduce energy use and CO2 emissions-analysis of three mitigation scenarios for iron and steel production in China. Mitig. Adapt. Strat. Gl. 2016, 21, 699–719. [Google Scholar] [CrossRef]
- Gonçalves, M.; Monteiro, H.; Iten, M. Life Cycle Assessment Studies on Lightweight Materials for Automotive Applications—An Overview. Energy Rep. 2022, 8, 338–345. [Google Scholar] [CrossRef]
- Yan, D.; Tasan, C.C.; Raabe, D. High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels. Acta Mater. 2015, 96, 399–409. [Google Scholar] [CrossRef]
- Tasan, C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F.; Raabe, D. Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater. 2014, 81, 386–400. [Google Scholar] [CrossRef]
- Stinville, J.C.; Vanderesse, N.; Bridier, F.; Bocher, P.; Pollock, T.M. High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mater. 2015, 98, 29–42. [Google Scholar] [CrossRef]
- Wei, S.; Kim, J.; Cann, J.L.; Gholizadeh, R.; Tsuji, N.; Tasan, C.C. Plastic straininduced sequential martensitic transformation. Scr. Mater. 2020, 185, 36–41. [Google Scholar] [CrossRef]
- Wang, X.D.; Huang, B.X.; Rong, Y.H.; Wang, L. Microstructures and stability of retained austenite in TRIP steels. Mater. Sci. Eng. 2006, 438–440, 300–305. [Google Scholar] [CrossRef]
- Xiong, Z.; Saleh, A.A.; Casillas, G.; Cui, S.; Pereloma, E.V. Phase-specific properties in a low-alloyed TRIP steel investigated using correlative nanoindentation measurements and electron microscopy. J. Mater. Sci. 2020, 55, 2578–2587. [Google Scholar] [CrossRef]
- He, B.B.; Pan, S. Revealing the intrinsic nanohardness of retained austenite grain in a medium Mn steel with heterogeneous structure. Mater. Charact. 2021, 171, 110745. [Google Scholar] [CrossRef]
- Tomota, Y.; Kuroki, K.; Mori, T.; Tamura, I. Tensile deformation of two-ductilephase alloys: Flow curves of α-γ Fe-Cr-Ni alloys. Mater. Sci. Eng. 1976, 24, 85–94. [Google Scholar] [CrossRef]
- Furnémont, Q.; Lacroix, G.; Godet, S.; Conlon, K.; Jacques, P. Critical assessment of the micromechanical behaviour of dual phase and trip-assisted multiphase steels. Can. Metall. Q. 2004, 43, 35–42. [Google Scholar] [CrossRef]
- De Diego-Calderón, I.; Santofimia, M.J.; Molina-Aldareguia, J.M.; Monclús, M.A.; Sabirov, I. Deformation behavior of a high strength multiphase steel at macroand micro-scales. Mater. Sci. Eng. 2014, 11, 201–211. [Google Scholar] [CrossRef]
- Ryu, J.H.; Kim, D.I.; Kim, H.S.; Bhadeshia, H.K.; Suh, D.W. Strain partitioning and mechanical stability of retained austenite. Scr. Mater. 2010, 63, 297–299. [Google Scholar] [CrossRef]
- Zhao, H.S.; Li, W.; Zhu, X.; Lu, X.H.; Wang, L.; Zhou, S.; Jin, X.J. Analysis of the relationship between retained austenite locations and the deformation behavior of quenching and partitioning treated steels. Mater. Sci. Eng. 2016, 649, 18–26. [Google Scholar] [CrossRef]
- Long, X.; Zhang, R.; Zhang, F.; Du, G.; Zhao, X. Study on quasi-in-situ tensile deformation behavior in medium-carbon carbide-free bainitic steel. Mater. Sci. Eng. 2019, 760, 158–164. [Google Scholar] [CrossRef]
- Koga, N.; Yamashita, T.; Umezawa, O. Strain distribution and deformationinduced martensitic transformation in tension for a TRIP steel plate. ISIJ Int. 2020, 60, 2083–2089. [Google Scholar] [CrossRef]
- Zhao, F.; Chen, P.; Xu, B.; Yu, Q.; Misra, R.D.K.; Wang, G.; Yi, H. Martensite transformation of retained austenite with diverse stability and strain partitioning during tensile deformation of a carbide-free Bainitic steel. Mater. Charact. 2021, 179, 111327. [Google Scholar] [CrossRef]
- Tan, X.; Ponge, D.; Lu, W.; Xu, Y.; He, H.; Yan, J.; Wu, D.; Raabe, D. Joint investigation of strain partitioning and chemical partitioning in ferrite-containing TRIP-assisted steels. Acta Mater. 2020, 186, 374–388. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Huang, M. In-situ measurement of plastic strain in martensite matrix induced by austenite-to-martensite transformation. Mater. Sci. Eng. 2021, 811, 141061. [Google Scholar] [CrossRef]
- Salehiyan, D.; Samei, J.; Amirkhiz, B.S.; Hector, L.G.; Wilkinson, D.S. Microstructural evolution during deformation of a QP980 steel. Metall. Mater. Trans. 2020, 51, 4524–4539. [Google Scholar] [CrossRef]
- Wang, M.M.; Hell, J.C.; Tasan, C.C. Martensite size effects on damage in quenching and partitioning steels. Scr. Mater. 2017, 138, 1–5. [Google Scholar] [CrossRef]
- Oh, H.S.; Biggs, K.; Güvenç, O.; Ghassemi-Armaki, H.; Pottore, N.; Tasan, C.C. In-situ investigation of strain partitioning and microstructural strain path development up to and beyond necking. Acta Mater. 2021, 215, 117023. [Google Scholar] [CrossRef]
- Kang, J.; Pottore, N.S.; Zhu, H.; Tasan, C.C. An in situ investigation of neighborhood effects in a ferrite-containing quenching and partitioning steel: Mechanical stability, strain partitioning, and damage. Acta Mater. 2023, 254, 118985. [Google Scholar] [CrossRef]
- Yang, H.; Liu, X. Study on the organization and properties of medium-Mn steel with V. In Proceedings of the MATEC Web of Conferences, Tianjin, China, 19 May 2022; Volume 358. [Google Scholar] [CrossRef]
- Gray III, G.T. High-strain-rate deformation: Mechanical behavior and deformation substructures induced. Annu. Rev. Mater. Res. 2012, 42, 285–303. [Google Scholar] [CrossRef]
- De Cooman, B.; Chen, L.; Kim, H.S.; Estrin, Y.; Kim, S.; Voswinckel, H. State-of-the-science of high manganese TWIP steels for automotive applications. In Microstructure and Texture in Steels; Springer: Berlin/Heidelberg, Germany, 2009; pp. 165–183. [Google Scholar] [CrossRef]
- Zavattieri, P.; Savic, V.; Hector Jr, L.; Fekete, J.; Tong, W.; Xuan, Y. Spatio-temporal characteristics of the Portevin–Le Cĥatelier effect in austenitic steel with twinning induced plasticity. Int. J. Plast. 2009, 25, 2298–2330. [Google Scholar] [CrossRef]
- Renard, K.; Ryelandt, S.; Jacques, P. Characterisation of the Portevin-Le Cĥatelier effect affecting an austenitic TWIP steel based on digital image correlation. Mater. Sci. Eng. 2010, 527, 2969–2977. [Google Scholar] [CrossRef]
- Alturk, R.; Hector, L.G.; Matthew Enloe, C.; Abu-Farha, F.; Brown, T.W. Strain rate effect on tensile flow behavior and anisotropy of a medium-manganese TRIP steel. JOM 2018, 70, 894–905. [Google Scholar] [CrossRef]
- Callahan, M.; Perlade, A.; Schmitt, J.H. Interactions of negative strain rate sensitivity, martensite transformation, and dynamic strain aging in 3rd generation advanced high-strength steels. Mater. Sci. Eng. 2019, 754, 140–151. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, D.; Ma, L.; Ding, H.; Feng, Y.; Hu, J.; Misra, R. Competing deformation mechanisms in an austenite-ferrite medium-Mn steel at different strain rates. Mater. Sci. Eng. 2021, 818, 141357. [Google Scholar] [CrossRef]
- Wang, M.; Huang, M.X. Abnormal TRIP effect on the work hardening behavior of a quenching and partitioning steel at high strain rate. Acta Mater. 2020, 188, 551–559. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, J.; Kane, S.N.; De Cooman, B.C. On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater. 2011, 59, 6809–6819. [Google Scholar] [CrossRef]
- Kim, J.K.; Chen, L.; Kim, H.S.; Kim, S.K.; Estrin, Y.; De Cooman, B. On the tensile behavior of high-manganese twinning-induced plasticity steel. Metall. Mater. Trans. 2009, 40, 3147–3158. [Google Scholar] [CrossRef]
- Canadinc, D.; Efstathiou, C.; Sehitoglu, H. On the negative strain rate sensitivity of Hadfield steel. Scr. Mater. 2008, 59, 1103–1106. [Google Scholar] [CrossRef]
- Jin, J.E.; Lee, Y.K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel. Acta Mater. 2012, 60, 1680–1688. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Z.; Dong, F.; Duan, Q.; Zhang, Z. Strain rate effects on tensile deformation behaviors for Fe–22Mn–0.6 C–(1.5 Al) twinning-induced plasticity steel. Mater. Sci. Eng. 2014, 607, 551–558. [Google Scholar] [CrossRef]
- Min, J.; Hector Jr, L.G.; Zhang, L.; Sun, L.; Carsley, J.E.; Lin, J. Plastic instability at elevated temperatures in a TRIP-assisted steel. Mater. Des. 2016, 95, 370–386. [Google Scholar] [CrossRef]
- Sevsek, S.; Haase, C.; Bleck, W. Strain-rate-dependent deformation behavior and mechanical properties of a multi-phase medium-manganese steel. Metals 2019, 9, 344. [Google Scholar] [CrossRef]
- Xiong, R.G.; Fu, R.Y.; Yu, S.; Qian, L.; Wei, X.C.; Lin, L. Tensile properties of TWIP steel at high strain rate. J. Iron Steel Res. Int. 2009, 16, 81–86. [Google Scholar] [CrossRef]
- Huang, M.; Yuan, J.; Wang, J.; Wang, L.; Mogucheva, A.; Xu, W. Role of martensitic transformation sequences on deformation-induced martensitic transformation at high strain rates: A quasi in-situ study. Mater. Sci. Eng. 2022, 831, 142319. [Google Scholar] [CrossRef]
- Lambert, P.; Hustedt, C.; Casem, D.; Sinclair, N.; Zhang, X.; Lee, K.; Leong, A.; Schuster, B.; Hufnagel, T. Strain-rate dependence of the martensitic transformation behavior in a 10 Pct Ni multi-phase steel under compression. Metall. Mater. Trans. 2020, 51, 5101–5109. [Google Scholar] [CrossRef]
- Talonen, J.; Hänninen, H.; Nenonen, P.; Pape, G. Effect of strain rate on the strain-induced γ→ α′ -martensite transformation and mechanical properties of austenitic stainless steels. Metall. Mater. Trans. 2005, 36, 421–432. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Wang, X.; Huang, W.; Huang, M.X. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel. Acta Mater. 2015, 88, 170–179. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Huang, W.; Huang, M.X. Suppression of dislocations at high strain rate deformation in a twinning-induced plasticity steel. Mater. Sci. Eng. 2015, 628, 84–88. [Google Scholar] [CrossRef]
- V’azquez-Fern’andez, N.; Isakov, M.; Hokka, M. Strain hardening and adiabatic heating of stainless steels after a sudden increase of strain rate. J. Dyn. Behav. Mater. 2022, 8, 316–321. [Google Scholar] [CrossRef]
- Huang, C.P.; Wang, M.; Zhu, K.Y.; Perlade, A.; Huang, M.X. Carbon-induced negative strain-rate sensitivity in a quenching and partitioning steel. Acta Mater. 2023, 255, 119099. [Google Scholar] [CrossRef]
Grade | C | Si | Mn | Al | Ni | Cr | Ti + Nb + V | Si + Cr + Mo | Other | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
A | 0.11 | - | 2.65 | 0.81 | 0.041 | - | 0.035 | 0.978 | - | [20] |
B | 0.16 | - | 2.08 | 1.03 | 0.044 | - | 0.008 | 0.689 | - | [20] |
C | 0.16 | - | 1.62 | 1.31 | 0.041 | - | 0.023 | 0.498 | - | [20] |
D | 0.17 | 1.47 | 4.46 | 0.03 | - | - | - | - | - | [25] |
E | 0.19 | 0.04 | 4.52 | 1.31 | - | - | - | - | - | [25] |
F | 0.20 | 1.25 | 2.40 | 0.02 | - | - | - | - | - | [7] |
G | 0.20 | 1.25 | 2.40 | 0.02 | - | 0.30 | - | - | - | [7] |
H | 0.20 | 1.25 | 2.40 | 0.02 | - | 0.30 | - | - | Nb (0.025) | [7] |
I | 0.21 | 1.69 | 1.94 | - | - | - | - | - | P (0.008) S (0.0013) Ti (0.02) N (0.0039) | [24] |
Grade | Annealing (°C) | Quenching (°C) | Partitioning (°C) |
---|---|---|---|
A | 850 | 200, 250, 275, 300 | 450 |
B | 850 | 125, 150, 175 | 450 |
C | 850 | 75, 100 | 450 |
D | 900 | 130, 150, 170, 190, 210, 230, 250, 270, 290 | 400 |
E | 900 | 130, 150, 170, 190, 210, 230, 250, 270, 290, 310, 330 | 400 |
F | 870 | 300 | 400 |
G | 870 | 280 | 400 |
H | 870 | 290 | 400 |
I | 780, 810, 840, 870 | 260 | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tedesco, M.M.; Caro, D.D.; Rizzi, P.; Baricco, M. Effect of Composition and Thermal Treatments on Mechanical Properties and Applications of Quenching and Partitioning Steels. Metals 2023, 13, 1757. https://doi.org/10.3390/met13101757
Tedesco MM, Caro DD, Rizzi P, Baricco M. Effect of Composition and Thermal Treatments on Mechanical Properties and Applications of Quenching and Partitioning Steels. Metals. 2023; 13(10):1757. https://doi.org/10.3390/met13101757
Chicago/Turabian StyleTedesco, Michele Maria, Daniele De Caro, Paola Rizzi, and Marcello Baricco. 2023. "Effect of Composition and Thermal Treatments on Mechanical Properties and Applications of Quenching and Partitioning Steels" Metals 13, no. 10: 1757. https://doi.org/10.3390/met13101757
APA StyleTedesco, M. M., Caro, D. D., Rizzi, P., & Baricco, M. (2023). Effect of Composition and Thermal Treatments on Mechanical Properties and Applications of Quenching and Partitioning Steels. Metals, 13(10), 1757. https://doi.org/10.3390/met13101757