Influence of Boron and Nitrogen on the Machinability, Polishability and Wear of Martensitic Stainless Steels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Heat Treatment
2.2. Characterization
2.3. Hardness
2.4. Polishability
2.5. Chip Forming
2.6. Tribological Testing
3. Results and Discussion
3.1. Microstructure
3.2. Hardness
3.3. Polishability
3.4. Chip Forming
3.5. Wear Properties
3.6. Wear Traks Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bergstrom, J.; Thuvander, F.; Devos, P.; Boher, C. Wear of Die Materials in Full Scale Plastic Injection Moulding of Glass Fibre Reinforced Polycarbonate. Wear 2001, 251, 1511–1521. [Google Scholar] [CrossRef]
- Gehricke, B.; Schruff, I. Trend in plastic mould steel applications. In Tool Steels in the Next Century, Proceedings of the 5th International Conference on Tooling, Leoben, Austria, 29 September–1 October 1999; Jeglitsch, F., Ebner, R., Leitner, H., Eds.; University of Leoben: Leoben, Austria, 1999; pp. 83–90. [Google Scholar]
- Bienk, E.J.; Mikkelsen, N.J. Application of Advanced Surface Treatment Technologies in the Modern Plastics Moulding Industry. Wear 1997, 207, 6–9. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, J.H. Formation Mechanism of Oxide-Sulfide Complex Inclusions in High-Sulfur-Containing Steel Melts. Metall. Mater. Trans. B 2018, 49, 311–324. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Li, Z.; Li, J.; Wu, X. Effects of a Cu addition on the corrosion resistance of low-alloy pre-hardened plastic mold steel. Mater. Tehnol. 2022, 56, 381–388. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Zuo, P.; Wu, X. Influence of Copper and Sulfur on the Cutting Performance of P20-type Plastic Mold Steel. Cailiao Daobao/Mater. Rep. 2022, 36, 21030076-7. [Google Scholar] [CrossRef]
- Niederhofer, P.; Henke, L.; Frie, D.; Neuenfeldt, M.; Zanger, F. Stainless Steels for Plastic Mold Frames Featuring Enhanced Machinability. Steel Res. Int. 2023, 94, 2200754. [Google Scholar] [CrossRef]
- Jiang, B.; Wu, M.; Sun, H.; Wang, Z.; Zhao, Z.; Liu, Y. Prediction Model of Austenite Growth and the Role of MnS Inclusions in Non-Quenched and Tempered Steel. Met. Mater. Int. 2018, 24, 15–22. [Google Scholar] [CrossRef]
- Emura, S.; Kawajiri, M.; Min, X.; Yamamoto, S.; Sakuraya, K.; Tsuzaki, K. Machinability Improvement and Its Mechanism in SUS304 Austenitic Stainless Steel by H-BN Addition. Tetsu-to-Hagane 2012, 98, 358–367. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Bao, Y.-P.; Wang, M.; Zhang, L.-C. Precipitation and Control of BN Inclusions in 42CrMo Steel and Their Effect on Machinability. Int. J. Miner. Metall. Mater. 2013, 20, 842–849. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Bao, Y.-P.; Wang, M.; Cai, X.-F.; Wang, L.-J.; Zhao, L.-H. Basic Research on Mechanism of BN Inclusion in Improving the Machinability of Steel. Rev. Metal. 2014, 50, e028. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Bao, Y.-P.; Wang, M.; Cai, X.-F.; Wang, L.-J.; Zhao, L.-H. Superior Machinability of Steel Enhanced with BN and MnS Particles. Int. J. Miner. Metall. Mater. 2016, 23, 276–282. [Google Scholar] [CrossRef]
- Ohtani, H.; Hasebe, M.; Ishida, K.; Nishizawa, T. Calculation of Fe-C-B Ternary Phase Diagram. Trans. Iron Steel Inst. Jpn. 1988, 28, 1043–1050. [Google Scholar] [CrossRef]
- Scott, F.W. Effect of Nitrogen on Steel. Ind. Eng. Chem. 1931, 23, 1036–1051. [Google Scholar] [CrossRef]
- Horovitz, M.B.; Neto, F.B.; Garbogini, A.; Tschiptschin, A.P. High Nitrogen Steels. Nitrogen Bearing Martensitic Stainless Steels: Microstructure and Properties. ISIJ Int. 1996, 36, 840–845. [Google Scholar] [CrossRef]
- Toro, A.; Misiolek, W.Z.; Tschiptschin, A.P. Correlations between Microstructure and Surface Properties in a High Nitrogen Martensitic Stainless Steel. Acta Mater. 2003, 51, 3363–3374. [Google Scholar] [CrossRef]
- Krasokha, N.; Berns, H. Study on Nitrogen in Martensitic Stainless Steels. HTM J. Heat Treat. Mater. 2011, 66, 150–164. [Google Scholar] [CrossRef]
- Burja, J.; Koležnik, M.; Župerl, Š.; Klančnik, G. Nitrogen and Nitride Non-Metallic Inclusions in Steel. Mater. Tehnol. 2019, 53, 919–928. [Google Scholar] [CrossRef]
- Liverani, A.; Bacciaglia, A.; Nisini, E.; Ceruti, A. Conformal 3D Material Extrusion Additive Manufacturing for Large Moulds. Appl. Sci. 2023, 13, 1892. [Google Scholar] [CrossRef]
- Habrman, M.; Chval, Z.; Ráž, K.; Kučerová, L.; Hůla, F. Injection Moulding into 3D-Printed Plastic Inserts Produced Using the Multi Jet Fusion Method. Materials 2023, 16, 4747. [Google Scholar] [CrossRef] [PubMed]
- ISO 6506-1:2014; Brinell Hardness Test. Presentation and indication ISO Committee: Geneve, Switzerland, 2014.
- ISO 3685-1993 (E); Tool-Life Testing with Single-Point Turning Tools. Presentation and indication ISO Committee: Geneve, Switzerland, 1993.
Specimen | C | Si | Mn | Cr | Ni | Mo | N | B | S |
---|---|---|---|---|---|---|---|---|---|
MSS-ind | 0.275 | 0.26 | 1.35 | 15 | 0.69 | 0.09 | 0.072 | 0.0008 | 0.076 |
MSS-0 | 0.274 | 0.27 | 1.37 | 15 | 0.69 | 0.09 | 0.073 | 0.0009 | 0.075 |
MSS-B | 0.274 | 0.35 | 1.36 | 14.9 | 0.69 | 0.08 | 0.066 | 0.032 | 0.074 |
MSS-N | 0.25 | 0.22 | 1.27 | 16.5 | 0.69 | 0.08 | 0.169 | 0.0005 | 0.074 |
Specimen | Time of Polishing [min] | Difficulty of Polishing | Remarks |
---|---|---|---|
MSS-IND | 210 | 2 | fog at edge |
MSS-0 | 140 | 5 | / |
MSS-B | 135 | 7 | crack in material |
MSS-N | 150 | 5 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedlaček, M.; Šetina Batič, B.; Žepič Bogataj, V.; Burja, J. Influence of Boron and Nitrogen on the Machinability, Polishability and Wear of Martensitic Stainless Steels. Metals 2023, 13, 1759. https://doi.org/10.3390/met13101759
Sedlaček M, Šetina Batič B, Žepič Bogataj V, Burja J. Influence of Boron and Nitrogen on the Machinability, Polishability and Wear of Martensitic Stainless Steels. Metals. 2023; 13(10):1759. https://doi.org/10.3390/met13101759
Chicago/Turabian StyleSedlaček, Marko, Barbara Šetina Batič, Vesna Žepič Bogataj, and Jaka Burja. 2023. "Influence of Boron and Nitrogen on the Machinability, Polishability and Wear of Martensitic Stainless Steels" Metals 13, no. 10: 1759. https://doi.org/10.3390/met13101759
APA StyleSedlaček, M., Šetina Batič, B., Žepič Bogataj, V., & Burja, J. (2023). Influence of Boron and Nitrogen on the Machinability, Polishability and Wear of Martensitic Stainless Steels. Metals, 13(10), 1759. https://doi.org/10.3390/met13101759