A Grey-Box Model of Laser Powder Directed Energy Deposition for Complex Scanning Strategy
Abstract
:1. Introduction
2. Modelling Approach
2.1. Problem and Solution Formulation
2.1.1. Melt Pool Geometry
2.1.2. Power Loss Calculation
3. Model Implementation and Validation
3.1. Model Implementation
Algorithm 1: Alghoritm of the logic loop cycle. |
3.2. Experimental Validation of the Model
4. Results and Discussion
4.1. Temperature Distribution
4.2. Track Dimensions
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Specific heat capacity (Jkg−1K−1) | |
D | Melt pool depth (mm) |
f | Logic function |
Green’s function | |
H | Deposition height of the track (mm) |
Local deposition height (mm) | |
h | Convective heat transfer coefficient (Wmm−2K−1) |
L | Melt pool total length (mm) |
Melt pool front length (mm) | |
Melt pool rear length (mm) | |
Latent heat of fusion (Jkg−1) | |
Latent heat of vaporization (Jkg−1) | |
N | Number of segment of the laser path |
O | Coordinates system origin of |
Coordinates system origin of | |
P | Laser power (W) |
Power losses due to convection (W) | |
Power losses due to evaporation (W) | |
Overall power losses (W) | |
Power losses due to powder melting (W) | |
Power losses due to radiation (W) | |
Useful power (W) | |
Powder flow rate (gmin−1) | |
Powder mass flux (g·s−1·mm−2) | |
Substrate reference frame | |
Melt pool reference frame | |
r | Laser beam radius (mm) |
Powder stream radius (mm) | |
s | Integration variable |
T | Temperature (K) |
Ambient temperature (K) | |
Initial temperature (K) | |
Melting temperature (K) | |
Mean melt pool temperature (K) | |
Peak temperature (K) | |
Temperature contribution due to the initial temperature (K) | |
Temperature contribution due to the heat flux (K) | |
t | Time (s) |
Melt pool volume above the top of the substrate (mm3) | |
Melt pool volume below the top of the substrate (mm3) | |
v | Travel speed (mm·s−1) |
W | Melt pool width (mm) |
Coordinate system of (mm) | |
Coordinate system of (mm) | |
Coordinates of the center of laser beam in (mm) | |
Limit error of the loop cycle | |
Substrate absorbivity | |
Emissivity | |
Thermal diffusivity (mm2s−1) | |
Thermal conductivity (WmmK) | |
Density (kgmm−3) | |
Stefan–Boltzman constant (Wmm−2K−4) | |
Integration variable | |
Heat flux (Wmm−2) | |
( | Coordinates of a generic point in (mm) |
Dimensionless variable | |
AM | Additive Manufacturing |
DED | Directed Energy Deposition |
DED-LB | Directed Energy Deposition using a laser based system |
CFD | Computational Fluid Dynamics |
FEM | Finite Element Method |
PBF-LB | Powder Bed Fusion using a laser based system |
References
- Leino, M.; Pekkarinen, J.; Soukka, R. The Role of Laser Additive Manufacturing Methods of Metals in Repair, Refurbishment and Remanufacturing – Enabling Circular Economy. Phys. Procedia 2016, 83, 752–760. [Google Scholar] [CrossRef]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Appl. Sci. 2019, 9, 3316. [Google Scholar] [CrossRef]
- Thompson, S.M.; Bian, L.; Shamsaei, N.; Yadollahi, A. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit. Manuf. 2015, 8, 36–62. [Google Scholar] [CrossRef]
- Lhabitant, S.; Badouaille, F.; Remache, D.; Cohen, G.; Toufine, A. Repair & maintenance by Metal Additive Manufacturing process on Titanium alloy parts. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1024, 012022. [Google Scholar] [CrossRef]
- Marya, M.; Singh, V.; Hascoet, J.; Marya, S. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys. J. Mater. Eng. Perform. 2018, 27, 813–824. [Google Scholar] [CrossRef]
- Ferreira, N.M.; Vila Pouca, M.; Fernandes, C.; Seabra, J.; Lesiuk, G.; Parente, M.; Jesus, A. Direct Energy Deposition Parametric Simulation Investigation in Gear Repair Applications. Materials 2023, 16, 3549. [Google Scholar] [CrossRef]
- Piscopo, G.; Iuliano, L. Current research and industrial application of laser powder directed energy deposition. Int. J. Adv. Manuf. Technol. 2022, 119, 6893–6917. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Fang, X.; Guo, Y. Residual Stress in Metal Additive Manufacturing. Procedia CIRP 2018, 71, 348–353. [Google Scholar] [CrossRef]
- Svetlizky, D.; Das, M.; Zheng, B.; Vyatskikh, A.L.; Bose, S.; Bandyopadhyay, A.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater. Today 2021, 49, 271–295. [Google Scholar] [CrossRef]
- Liu, J.; Jalalahmadi, B.; Guo, Y.; Sealy, M.; Bolander, N. A review of computational modeling in powder-based additive manufacturing for metallic part qualification. Rapid Prototyp. J. 2018, 24, 1245–1264. [Google Scholar] [CrossRef]
- Poggi, M.; Atzeni, E.; Iuliano, L.; Salmi, A. State-of-the-art of numerical simulation of laser powder Directed Energy Deposition process. Procedia CIRP 2022, 112, 376–381. [Google Scholar] [CrossRef]
- Kumara, C.; Segerstark, A.; Hanning, F.; Dixit, N.; Joshi, S.; Moverare, J.; Nylén, P. Microstructure modelling of laser metal powder directed energy deposition of alloy 718. Addit. Manuf. 2019, 25, 357–364. [Google Scholar] [CrossRef]
- Baykasoglu, C.; Akyildiz, O.; Candemir, D.; Yang, Q.; To, A.C. Predicting Microstructure Evolution During Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V. J. Manuf. Sci. Eng. 2018, 140, 051003. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Integrated 2D cellular automata-phase field modeling of solidification and microstructure evolution during additive manufacturing of Ti6Al4V. Comput. Mater. Sci. 2020, 183, 109889. [Google Scholar] [CrossRef]
- Lu, X.; Lin, X.; Chiumenti, M.; Cervera, M.; Hu, Y.; Ji, X.; Ma, L.; Yang, H.; Huang, W. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by Directed Energy Deposition: Modelling and experimental calibration. Addit. Manuf. 2019, 26, 166–179. [Google Scholar] [CrossRef]
- Vundru, C.; Singh, R.; Yan, W.; Karagadde, S. Effect of spreading of the melt pool on the deposition characteristics in laser directed energy deposition. Procedia Manuf. 2021, 53, 407–416. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Q.; Meng, R. CFD–DPM Simulation Study of the Effect of Powder Layer Thickness on the SLM Spatter Behavior. Metals 2022, 12, 1897. [Google Scholar] [CrossRef]
- Haley, J.C.; Schoenung, J.M.; Lavernia, E.J. Modelling particle impact on the melt pool and wettability effects in laser directed energy deposition additive manufacturing. Mater. Sci. Eng. A 2019, 761, 138052. [Google Scholar] [CrossRef]
- Colaço, R.; Costa, L.; Guerra, R.; Vilar, R. A Simple Correlation Between the Geometry of Laser Cladding Tracks and the Process Parameters. In Laser Processing: Surface Treatment and Film Deposition; Springer: Berlin/Heidelberg, Germany, 1996; pp. 421–429. [Google Scholar] [CrossRef]
- Pinkerton, A.; Li, L. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances. J. Phys. D Appl. Phys. 2004, 37, 1885. [Google Scholar] [CrossRef]
- Picasso, M.; Marsden, C.; Wagniere, J.; Frenk, A.; Rappaz, M. A Simple but Realistic Model for Laser Cladding. MEtallurgical Mater. Trans. B 1994, 25, 281–291. [Google Scholar] [CrossRef]
- Kaplan, A.F.H.; Weinberger, B.; Schuoecker, D. Theoretical analysis of laser cladding and alloying. In Proceedings of the Lasers in Material Processing; Beckmann, L.H.J.F., Ed.; International Society for Optics and Photonics. SPIE: Bellingham, WA, USA, 1997; Volume 3097, pp. 499–506. [Google Scholar] [CrossRef]
- Peyre, P.; Aubry, P.; Fabbro, R.; Neveu, R.; Longuet, A. Analytical and numerical modelling of the direct metal deposition laser process. J. Phys. Appl. Phys. 2008, 41, 025403. [Google Scholar] [CrossRef]
- Ahsan, M.N.; Pinkerton, A.J. An analytical–numerical model of laser direct metal deposition track and microstructure formation. Model. Simul. Mater. Sci. Eng. 2011, 19, 055003. [Google Scholar] [CrossRef]
- Wan, L.; Shi, S.; Xia, Z.; Shi, T.; Zou, Y.; Li, K.; Chen, X. Directed energy deposition of CNTs/AlSi10Mg nanocomposites: Powder preparation, temperature field, forming, and properties. Opt. Laser Technol. 2021, 139, 106984. [Google Scholar] [CrossRef]
- Stender, M.E.; Beghini, L.L.; Sugar, J.D.; Veilleux, M.G.; Subia, S.R.; Smith, T.R.; Marchi, C.W.S.; Brown, A.A.; Dagel, D.J. A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Addit. Manuf. 2018, 21, 556–566. [Google Scholar] [CrossRef]
- Gan, Z.; Yu, G.; He, X.; Li, S. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. Int. J. Heat Mass Transf. 2017, 104, 28–38. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, J.; Liang, X.; To, A.C. A level-set based continuous scanning path optimization method for reducing residual stress and deformation in metal additive manufacturing. Comput. Methods Appl. Mech. Eng. 2020, 360, 112719. [Google Scholar] [CrossRef]
- Biegler, M.; Elsner, B.A.M.; Graf, B.; Rethmeier, M. Geometric distortion-compensation via transient numerical simulation for directed energy deposition additive manufacturing. Sci. Technol. Weld. Join. 2020, 25, 468–475. [Google Scholar] [CrossRef]
- Hu, D.; Kovacevic, R. Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2003, 217, 441–452. [Google Scholar] [CrossRef]
- Prokhorov, A.; Konov, V.; Ursu, I.; Mihailescu, N. Laser Heating of Metals; Series in Optics and Optoelectronics; Taylor & Francis: Abingdon, UK, 1990. [Google Scholar]
- Cline, H.E.; Anthony, T.R. Heat treating and melting material with a scanning laser or electron beam. J. Appl. Phys. 2008, 48, 3895–3900. [Google Scholar] [CrossRef]
- Carslaw, H.S.H.S. Conduction of Heat in Solids, 2nd ed.; Carslaw, H.S., Jaeger, J.C., Eds.; Clarendon Press: Oxford, UK, 1959. [Google Scholar]
- Forslund, R.; Snis, A.; Larsson, S. Analytical solution for heat conduction due to a moving Gaussian heat flux with piecewise constant parameters. Appl. Math. Model. 2019, 66, 227–240. [Google Scholar] [CrossRef]
- Piscopo, G.; Atzeni, E.; Salmi, A. A Hybrid Modeling of the Physics-Driven Evolution of Material Addition and Track Generation in Laser Powder Directed Energy Deposition. Materials 2019, 12, 2819. [Google Scholar] [CrossRef] [PubMed]
- Pinkerton, A.; Li, L. An analytical model of energy distribution in laser direct metal deposition. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2004, 218, 363–374. [Google Scholar] [CrossRef]
- Salcudean, M.; Choi, M.; Greif, R. A study of heat transfer during arc welding. Int. J. Heat Mass Transf. 1986, 29, 215–225. [Google Scholar] [CrossRef]
- Azinpour, E.; Darabi, R.; Cesar de Sa, J.; Santos, A.; Hodek, J.; Dzugan, J. Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach. Finite Elem. Anal. Des. 2020, 177, 103417. [Google Scholar] [CrossRef]
- Sciammarella, F.; Salehi Najafabadi, B. Processing Parameter DOE for 316L Using Directed Energy Deposition. J. Manuf. Mater. Process. 2018, 2, 61. [Google Scholar] [CrossRef]
- Saboori, A.; Piscopo, G.; Lai, M.; Salmi, A.; Biamino, S. An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition. Mater. Sci. Eng. A 2020, 780, 139179. [Google Scholar] [CrossRef]
- Oh, W.J.; Lee, W.J.; Kim, M.S.; Jeon, J.B.; Shim, D.S. Repairing additive-manufactured 316L stainless steel using direct energy deposition. Opt. Laser Technol. 2019, 117, 6–17. [Google Scholar] [CrossRef]
- Poggi, M.; Salmi, A.; Atzeni, E.; Iuliano, L. Effect of process parameters on AISI 316L single tracks by laser powder directed energy deposition. Procedia CIRP 2023, 118, 735–740. [Google Scholar] [CrossRef]
- Piscopo, G.; Atzeni, E.; Biamino, S.; Iuliano, L.; Mazzucato, F.; Saboori, A.; Salmi, A.; Valente, A. Analysis of single tracks of IN718 produced by laser powder directed energy deposition process. Procedia CIRP 2022, 112, 340–345. [Google Scholar] [CrossRef]
Input Category | Input |
---|---|
Material properties | Thermal characteristics |
Mechanical characteristics | |
Powder radius | |
Boundary conditions | Ambient and initial temperature |
Convection coefficient | |
Process parameters | Laser power |
Travel speed | |
Powder flow rate | |
Machine parameters | Laser spot diameter |
Powder stream radius |
Property | Symbol | Value | Units |
---|---|---|---|
Density | 8 × 10 | kgmm | |
Specific heat capacity | 800 | JkgK | |
Thermal conductivity | 21.4 × 10 | WmmK | |
Thermal diffusivity | 3.34 | mms | |
Latent heat of fusion | 260 × 10 | Jkg | |
Latent heat of vaporization | 6259.5 | Jkg | |
Convective heat transfer | h | 1 × 10 | Wmm−2K−1 |
Stefan Bolzman constant | 5.67 × 10 | WmmK | |
Emissivity | 0.6 | − |
Track ID | Power (W) | Travel Speed (mmmin−1) | Powder Flow Rate (gmin−1) |
---|---|---|---|
L01 | 700 | 600 | 8.9 |
L02 | 700 | 600 | 13.1 |
L03 | 700 | 600 | 17.2 |
L04 | 700 | 800 | 8.9 |
L05 | 700 | 800 | 13.1 |
L06 | 700 | 800 | 17.2 |
L07 | 700 | 1000 | 8.9 |
L08 | 700 | 1000 | 13.1 |
L09 | 700 | 1000 | 17.2 |
L10 | 900 | 600 | 8.9 |
L11 | 900 | 600 | 13.1 |
L12 | 900 | 600 | 17.2 |
L13 | 900 | 800 | 8.9 |
L14 | 900 | 800 | 13.1 |
L15 | 900 | 800 | 17.2 |
L16 | 900 | 1000 | 8.9 |
L17 | 900 | 1000 | 13.1 |
L18 | 900 | 1000 | 17.2 |
Track ID | Power (W) | Travel Speed (mmmin−1) | Powder Flow Rate (gmin−1) |
---|---|---|---|
C01/S01 | 720 | 480 | 13.1 |
C02/S02 | 720 | 480 | 17.2 |
C03/S03 | 810 | 540 | 13.1 |
C04/S04 | 810 | 540 | 17.2 |
C05/S05 | 900 | 600 | 13.1 |
C06/S06 | 900 | 600 | 17.2 |
Track ID | Peak Temperature (°C) |
---|---|
L01 | 1824 |
L02 | 1763 |
L03 | 1686 |
L04 | 1730 |
L05 | 1688 |
L06 | 1590 |
L07 | 1652 |
L08 | 1624 |
L09 | 1565 |
L10 | 2061 |
L11 | 1952 |
L12 | 1817 |
L13 | 1962 |
L14 | 1881 |
L15 | 1808 |
L16 | 1934 |
L17 | 1864 |
L18 | 1796 |
Track ID | Peak Temperature (°C) |
---|---|
C01 | 2174 |
C02 | 2063 |
C03 | 2144 |
C04 | 2037 |
C05 | 2278 |
C06 | 2175 |
Track ID | Peak Temperature (°C) |
---|---|
S01 | 2268 |
S02 | 2151 |
S03 | 2229 |
S04 | 2173 |
S05 | 2383 |
S06 | 2275 |
Track ID | (mm) | (mm) | (%) | (mm) | (mm) | (%) |
---|---|---|---|---|---|---|
L01 | 1.67 ± 0.02 | 1.80 | 8% | 0.25 ± 0.02 | 0.31 | 26% |
L02 | 1.62 ± 0.05 | 1.67 | 3% | 0.50 ± 0.01 | 0.43 | −15% |
L03 | 1.62 ± 0.07 | 1.38 | −15% | 0.42 ± 0.01 | 0.47 | 12% |
L04 | 1.55 ± 0.04 | 1.56 | 1% | 0.23 ± 0.01 | 0.21 | −11% |
L05 | 1.51 ± 0.03 | 1.46 | −3% | 0.33 ± 0.01 | 0.28 | −13% |
L06 | 1.61 ± 0.07 | 1.29 | −20% | 0.35 ± 0.01 | 0.33 | −5% |
L07 | 1.45 ± 0.04 | 1.34 | −7% | 0.17 ± 0.01 | 0.15 | −15% |
L08 | 1.43 ± 0.02 | 1.26 | −12% | 0.21 ± 0.01 | 0.20 | −6% |
L09 | 1.49 ± 0.03 | 1.19 | −20% | 0.21 ± 0.02 | 0.20 | −5% |
L10 | 2.00 ± 0.02 | 2.22 | 11% | 0.36 ± 0.02 | 0.38 | 4% |
L11 | 1.88 ± 0.06 | 2.09 | 11% | 0.56 ± 0.02 | 0.54 | −3% |
L12 | 1.86 ± 0.04 | 1.95 | 5% | 0.58 ± 0.02 | 0.66 | 13% |
L13 | 1.90 ± 0.02 | 1.99 | 5% | 0.30 ± 0.01 | 0.27 | −10% |
L14 | 1.79 ± 0.04 | 1.87 | 4% | 0.34 ± 0.01 | 0.37 | 9% |
L15 | 1.78 ± 0.05 | 1.77 | −1% | 0.62 ± 0.03 | 0.46 | −25% |
L16 | 1.81 ± 0.03 | 1.93 | 7% | 0.17 ± 0.01 | 0.22 | 24% |
L17 | 1.75 ± 0.04 | 1.86 | 7% | 0.33 ± 0.01 | 0.30 | −7% |
L18 | 1.68 ± 0.05 | 1.75 | 4% | 0.33 ± 0.01 | 0.37 | 12% |
Track ID | (mm) | (mm) | (%) | (mm) | (mm) | (%) |
---|---|---|---|---|---|---|
C01 | 1.91 ± 0.03 | 1.93 | 1% | 0.48 ± 0.01 | 0.52 | 10% |
C02 | 1.77 ± 0.04 | 1.70 | −4% | 0.56 ± 0.01 | 0.61 | 8% |
C03 | 1.99 ± 0.01 | 2.00 | 1% | 0.43 ± 0.02 | 0.48 | 10% |
C04 | 1.88 ± 0.07 | 1.81 | −4% | 0.52 ± 0.01 | 0.57 | 10% |
C05 | 2.05 ± 0.04 | 2.10 | 2% | 0.39 ± 0.01 | 0.45 | 16% |
C06 | 2.00 ± 0.02 | 1.92 | −4% | 0.44 ± 0.02 | 0.54 | 22% |
Track ID | (mm) | (mm) | (%) | (mm) | (mm) | (%) |
---|---|---|---|---|---|---|
S01 | 1.92 ± 0.03 | 1.95 | 2% | 0.46 ± 0.03 | 0.53 | 22% |
S02 | 1.70 ± 0.04 | 1.71 | 1% | 0.67 ± 0.06 | 0.61 | −8% |
S03 | 1.99 ± 0.01 | 2.00 | +0% | 0.41 ± 0.05 | 0.49 | 19% |
S04 | 1.83 ± 0.07 | 1.78 | −3% | 0.61 ± 0.06 | 0.56 | −7% |
S05 | 2.02 ± 0.04 | 2.12 | 5% | 0.40 ± 0.03 | 0.45 | 13% |
S06 | 1.98 ± 0.02 | 1.91 | -4% | 0.51 ± 0.04 | 0.55 | 9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poggi, M.; Atzeni, E.; De Chirico, M.; Salmi, A. A Grey-Box Model of Laser Powder Directed Energy Deposition for Complex Scanning Strategy. Metals 2023, 13, 1763. https://doi.org/10.3390/met13101763
Poggi M, Atzeni E, De Chirico M, Salmi A. A Grey-Box Model of Laser Powder Directed Energy Deposition for Complex Scanning Strategy. Metals. 2023; 13(10):1763. https://doi.org/10.3390/met13101763
Chicago/Turabian StylePoggi, Mirna, Eleonora Atzeni, Michele De Chirico, and Alessandro Salmi. 2023. "A Grey-Box Model of Laser Powder Directed Energy Deposition for Complex Scanning Strategy" Metals 13, no. 10: 1763. https://doi.org/10.3390/met13101763
APA StylePoggi, M., Atzeni, E., De Chirico, M., & Salmi, A. (2023). A Grey-Box Model of Laser Powder Directed Energy Deposition for Complex Scanning Strategy. Metals, 13(10), 1763. https://doi.org/10.3390/met13101763