Dependence of Electrochemical Characteristics of a Biodegradable Fe-30Mn-5Si wt.% Alloy on Compressive Deformation in a Wide Temperature Range
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Phase Analysis
3.2. Electrochemical Behavior
4. Conclusions
- The theoretical justification for the atypical changes in the electrode potential during the exposure of the Fe-30Mn-5S alloy, which corrodes via active dissolution mode in a biological solution, was provided. It is shown that the cause of the spontaneous anodic polarization of the Fe-30Mn-5Si alloy after compression tests at temperatures of 350, 500, 700, and 900 °C is the absence (or low content) of the anodic structural component (HCP ε-martensite) after the compression test at 900 °C. Wherein the active grains and subgrains boundaries, and subgrains themselves act as the anodic structural components, with their selective dissolution increasing the relative amount of cathodic structural components on the surface of the studied specimens that leads to an accelerated cathodic process and corresponding increase in biodegradation rate with an observed shift toward the positives values of the electrode potential;
- The biodegradation rates of the Fe-30Mn-5Si alloy were calculated using the extrapolation method of polarization curves after compression tests at deformation temperatures of 350, 500, 700, and 900 °C and a strain rate of 1 s−1. The analysis of polarization curves allowed for the establishment of the causes and patterns of changes in the electrochemical parameters of the studied alloy, depending on the thermomechanical treatment regimes. The observed elevation of the corrosion potential and the decrease in the corrosion current density of the Fe-30Mn-5Si alloy after compression tests at the deformation temperatures of 350, 500, and 700 °C, which consist only of the FCC γ-austenite phase, are due to dynamic recovery, which leads to a decrease in the concentration of point defects, and dynamic polygonization;
- Based on the results of the rheological compression tests, taking into account the biodegradation rate of the Fe-30Mn-5Si alloy, the radial–shear rolling, multiaxial forging, and longitudinal rolling should be carried out at a deformation temperature of 900 °C and strain rate of 1 s−1 due to the following reason: these chosen deformation conditions result in a two-phase state, comprising FCC γ-austenite + HCP ε-martensite, which provides the highest biodegradation rate. It is worth noting that the results of this study on electrochemical behavior established that thermomechanical treatment at a specific deformation temperature from 350 to 900 °C and strain rate 1 s−1 can regulate the biodegradation rate of the Fe-30Mn-5Si alloy, which ranges from 0.14 to 0.42 mm/year, depending on the desired recovery rate for damaged bone tissue.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Venezuela, J.; Dargusch, M.S. Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100822. [Google Scholar] [CrossRef]
- Hermawan, H. Biodegradable Metals—From Concept to Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Park, J.; Lakes, R.S. Biomaterials—An Introduction; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Narushima, T. Metals for Biomedical Devices, 2nd ed.; Niinomi, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 495–521. [Google Scholar] [CrossRef]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef]
- Seitz, J.-M.; Durisin, M.; Goldman, J.; Drelich, J.W. Recent advances in biodegradable metals for medical sutures: A critical review. Adv. Healthc. Mater. 2015, 4, 1915–1936. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M.J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S.J.; Kaplan, D.L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020, 5, 61–81. [Google Scholar] [CrossRef]
- Heiden, M.; Walker, E.; Stanciu, L. Magnesium, Iron and Zinc Alloys, the Trifecta of Bioresorbable Orthopaedic and Vascular Implantation—A Review. J. Biotechnol. Biomater. 2015, 5, 178. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Y.; Qin, L. Progress of biodegradable metals. Prog. Nat. Sci. Mater. Int. 2014, 24, 414–422. [Google Scholar] [CrossRef]
- Hyuk, S.; Jung, Y.; Kim, S.H. Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stent. Acta Biomater. 2017, 60, 3–22. [Google Scholar] [CrossRef]
- Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K.U.; Willumeit, R.; Feyerabend, F. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 2008, 12, 63–72. [Google Scholar] [CrossRef]
- Sezer, N.; Evis, Z.; Kayhan, S.M.; Tahmasebifar, A.; Koç, M. Review of magnesiumbased biomaterials and their applications. J. Magnes. Alloys 2018, 6, 23–43. [Google Scholar] [CrossRef]
- Yang, H.; Jia, B.; Zhang, Z.; Qu, X.; Li, G.; Lin, W.; Zhu, D.; Dai, K.; Zheng, Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020, 11, 401. [Google Scholar] [CrossRef]
- Mostaed, E.; Sikora-Jasinska, M.; Mostaed, A.; Loffredo, S.; Demir, A.G.; Previtali, B.; Mantovani, D.; Beanland, R.; Vedani, M. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation. J. Mech. Behav. Biomed. Mater. 2016, 60, 581–602. [Google Scholar] [CrossRef] [PubMed]
- Kraus, T.; Moszner, F.; Fischerauer, S.; Fiedler, M.; Martinelli, E.; Eichler, J.; Witte, F.; Willbold, E.; Schinhammer, M.; Meischel, M.; et al. Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks. Acta Biomater. 2014, 10, 3346–3353. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.; Yang, Y.; Virtanen, S.; Boccaccini, A.R. Iron and iron-based alloys for temporary cardiovascular applications. J. Mater. Sci. Mater. Med. 2015, 26, 138. [Google Scholar] [CrossRef] [PubMed]
- He, J.; He, F.; Li, D.; Liu, Y.-L.; Liu, Y.Y.; Yea, Y.-J.; Yin, D.C. Advances in Fe-based biodegradable metallic materials. RSC Adv. 2016, 6, 112819–112838. [Google Scholar] [CrossRef]
- Fantanariu, M.; Trinca, L.C.; Solcan, C.; Trofin, A.; Strungaru, S.; Şindilar, E.V.; Plavan, G.; Stanciu, S. A new Fe–Mn–Si alloplastic biomaterial as bone grafting material: In vivo study. Appl. Surf. Sci. 2015, 352, 129–139. [Google Scholar] [CrossRef]
- Trinca, L.C.; Burtan, L.; Mareci, D.; Fernández-Perez, B.M.; Stoleriu, I.; Stanciu, T.; Stanciu, S.; Solcan, C.; Izquierdo, J.; Souto, R.M. Evaluation of in vitro corrosion resistance and in vivo osseointegration properties of a Fe-Mn-Si-Ca alloy as potential degradable implant biomaterial. Mater. Sci. Eng. C 2021, 118, 111436. [Google Scholar] [CrossRef]
- Revie, W.R.; Uhlig, H.H. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Lu, S.; Wang, Q.; Zhang, Y.; Li, H.; Feng, H.; Tan, L.; Yang, K. A novel biodegradable high nitrogen iron alloy with simultaneous enhancement of corrosion rate and local corrosion resistance. J. Mater. Sci. Technol. 2023, 152, 94–99. [Google Scholar] [CrossRef]
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambridge, UK, 1998; p. 284. [Google Scholar]
- Drevet, R.; Zhukova, Y.; Malikova, P.; Dubinskiy, S.; Korotitskiy, A.; Pustov, Y.; Prokoshkin, S. Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants. Metall. Mater. Trans. A 2018, 49, 1006–1013. [Google Scholar] [CrossRef]
- Prokoshkin, S.; Pustov, Y.; Zhukova, Y.; Kadirov, P.; Dubinskiy, S.; Sheremetyev, V.; Karavaeva, M. Effect of thermomechanical treatment on functional properties of biodegradable Fe-30Mn-5Si shape memory alloy. Metall. Mater. Trans. A 2021, 52, 2024–2032. [Google Scholar] [CrossRef]
- Prokoshkin, S.; Pustov, Y.; Zhukova, Y.; Kadirov, P.; Karavaeva, M.; Prosviryakov, A.; Dubinskiy, S. Effect of thermomechanical treatment on structure and functional fatigue characteristics of biodegradable Fe-30Mn-5Si 3 (wt.%) shape memory alloy. Materials 2021, 14, 3327. [Google Scholar] [CrossRef]
- Sheremetyev, V.; Kudryashova, A.; Cheverikin, V.; Korotitskiy, A.; Galkin, S.; Prokoshkin, S.; Brailovski, V. Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr-14Nb (at. %) alloy for bone implants: Microstructure, texture and functional properties. J. Alloys Compd. 2019, 800, 320–326. [Google Scholar] [CrossRef]
- Kudryashova, A.; Sheremetyev, V.; Lukashevich, K.; Cheverikin, V.; Inaekyan, K.; Galkin, S.; Prokoshkin, S.; Brailovski, V. Effect of a combined thermomechanical treatment on the microstructure, texture and superelastic properties of Ti-18Zr-14Nb alloy for orthopedic implants. J. Alloys Compd. 2020, 843, 156066. [Google Scholar] [CrossRef]
- Naizabekov, A.B.; Lezhnev, S.N.; Arbuz, A.S.; Panin, E.A. Obtaining of long-length rods with ultrafine-grained structure by the radial-shear rolling. IOP Conf. Ser. Mater. Sci. Eng. 2019, 461, 012065. [Google Scholar] [CrossRef]
- Dobatkin, S.; Galkin, S.; Estrin, Y.; Serebryany, V.; Diez, M.; Martynenko, N.; Lukyanova, E.; Perezhogin, V. Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling. J. Alloys Compd. 2019, 774, 969–979. [Google Scholar] [CrossRef]
- Stefanik, A.; Szota, P.; Mroz, S.; Bajor, T.; Dyja, H. Properties of the AZ31 magnesium alloy round bars obtained in different rolling pricesses. Arch. Metall. Mater. 2015, 60, 3001–3005. [Google Scholar] [CrossRef]
- Gryc, A.; Bajor, T.; Dyja, H. The analysis of influence the parameters of rolling process in three high skew rolling mill of AZ31 magnesium alloy bars on temperature distribution. Metalurgija 2016, 55, 772–774. [Google Scholar]
- Akopyan, T.; Aleshchenko, A.S.; Belov, N.A.; Galkin, S.P. Effect of Radial-Shear Rolling on the Formation of Structure and Mechanical Properties of Al-Ni and Al-Ca Aluminum-Matrix Composite Alloys of Eutectic Type. Phys. Met. Metallogr. 2018, 119, 241–250. [Google Scholar] [CrossRef]
- Karpov, B.V.; Patrin, P.V.; Galkin, S.P.; Kharitonov, E.A.; Karpov, I.B. Radial-Shear Rolling of Titanium Alloy VT-8 Bars with Controlled Structure for Small Diameter Ingots (≤200 mm). Metallurgist 2018, 61, 884–890. [Google Scholar] [CrossRef]
- Negodin, D.A.; Galkin, S.P.; Kharitonov, E.A.; Karpov, B.V.; Kharkovsky, D.N.; Dubovitskaya, I.A.; Patrin, P.V. Testing of the Technology of Radial-Shear Rolling and Predesigning Selection of Rolling Minimills for the Adaptable Production of Titanium Rods with Small Cross Sections Under the Conditions of the “CHMP” JSC. Metallurgist 2019, 62, 1143. [Google Scholar] [CrossRef]
- Lopatin, N.V. Effect of hot rolling by screw mill on microstructure of a Ti-6Al-4V titanium alloy. Int. J. Mater. Form. 2013, 6, 459–465. [Google Scholar] [CrossRef]
- Galkin, S.P. Theory and Technology of Stationary Helical Rolling of Billets and Bars of Low-Plasticity Steels and Alloys; Dissertation Abstract for the Degree of Doctor of Technical Sciences. Ph.D. Thesis, Moscow Institute, Moscow, Russia, 1998. [Google Scholar]
- Manjunath, G.A.; Shivakumar, S.; Fernandez, R.; Nikhil, R.; Sharath, P.C. A review on effect of multi-directional forging/multi-axial forging on mechanical and microstructural properties of aluminum alloy. Mater. Today Proc. 2021, 47, 2565–2569. [Google Scholar] [CrossRef]
- Zambrano, O.A.; Logé, R.E. Dynamic recrystallization study of a Fe-Mn-Si based shape memory alloy in constant and variable thermomechanical conditions. Mater. Charact. 2019, 152, 151–161. [Google Scholar] [CrossRef]
- Kadirov, P.; Zhukova, Y.; Pustov, Y.; Karavaeva, M.; Sheremetyev, V.; Korotitskiy, A.; Shcherbakova, E.; Baranova, A.; Komarov, V.; Prokoshkin, S. Effect of plastic deformation in various temperature-rate conditions on structure and mechanical properties of biodegradable Fe-30Mn-5Si alloy. Metall. Mater. Trans. A, 2023; submitted. [Google Scholar]
- Pustov, Y.; Zhukova, Y.; Malikova, P.; Prokoshkin, S.; Dubinskii, S. Structure and Corrosion-Electrochemical Behavior of Bioresorbable Alloys Based on the Fe–Mn System. Prot. Met. Phys. Chem. Surf. 2018, 58, 469–476. [Google Scholar] [CrossRef]
- Sheremetev, V.A.; Akhmadkulov, O.B.; Komarov, V.S.; Korotitskii, A.V.; Lukashevich, K.E.; Galkin, S.P.; Andreev, V.A.; Prokoshkin, S.D. Thermomechanical Behavior and Structure Formation of Shape Memory Ti–Zr–Nb Alloy for Medical Applications. Met. Sci. Heat Treat. 2021, 63, 403–413. [Google Scholar] [CrossRef]
- Winston, R.R. (Ed.) Uhlig’s Corrosion Handbook, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- ASTM G31-21; Standard Guide for Laboratory Immersion Corrosion Testing of Metals. ASTM International: West Conshohocken, PA, USA, 2021.
- Isaev, N.I. Theory of Corrosion Processes; Metallurgiya: Moscow, Russia, 1997; p. 360. (In Russian) [Google Scholar]
- Zhuk, N.P. A Course in Corrosion Theory and Protection of Metals; Metallurgiya: Moscow, Russia, 1976; p. 472. (In Russian) [Google Scholar]
- Jiang, X.; Zhang, L.; Yin, L.; Yang, G.; Xie, J.; Zhang, L.; Lu, H.; Liang, D.; Deng, L. Corrosion behavior of fluorinated carbonyl iron-hydrophobic composites in neutral salt spray environment. Corros. Sci. 2023, 210, 110823. [Google Scholar] [CrossRef]
- Sokol, I.Y.; Ulyanin, E.A.; Feldgandler, E.G. Structure and Corrosion of Metals and Alloys, Atlas: A Handbook; Metallurgy: Moscow, Russia, 1989; p. 400. (In Russian) [Google Scholar]
- Hermawan, H.; Dube, D.; Mantovani, D. Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents. J. Biomed. Mater. Res. Part A 2010, 93A, 1–11. [Google Scholar] [CrossRef]
- Xuemei, Z.; Yansheng, Z. Effect of ε-martensite on the electrochemical corrosion behavior of an Fe-Mn-Si shape memory alloy in aqueous solutions. J. Mater. Sci. Lett. 1997, 16, 1516–1517. [Google Scholar] [CrossRef]
- Li, Y.; Jahr, H.; Pavanram, P.; Bobbert, F.S.L.; Puggi, U.; Zhang, X.-Y.; Pouran, B.; Leeflang, M.A.; Weinans, H.; Zhou, J.; et al. Additively manufactured functionally graded biodegradable porous iron. Acta Biomater. 2019, 96, 646–661. [Google Scholar] [CrossRef]
- Obayi, C.S.; Tolouei, R.; Mostavan, A.; Paternoster, C.; Turgeon, S.; Okorie, B.A.; Obikwelu, D.O.; Mantovani, D. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application. Biomatter 2016, 6, e959874. [Google Scholar] [CrossRef]
- Rybalchenko, O.; Anisimova, N.; Martynenko, N.; Rybalchenko, G.; Belyakov, A.; Shchetinin, I.; Lukyanova, E.; Chernogorova, O.; Raab, A.; Pashintseva, N.; et al. Biocompatibility and Degradation of Fe-Mn-5Si Alloy after Equal-Channel Angular Pressing: In Vitro and In Vivo Study. Appl. Sci. 2023, 13, 9628. [Google Scholar] [CrossRef]
RHT and TMT Regimes | B200γ, 2θ deg. |
---|---|
RHT | 0.39 ± 0.02 |
350 °C | 0.51 ± 0.03 |
500 °C | 0.50 ± 0.03 |
700 °C | 0.43 ± 0.03 |
900 °C | 0.39 ± 0.02 |
Treatment | Corrosion Potential Ecorr, mV | icorr · 105, A/cm2 | Corrosion Rate *, Cr, mm/year |
---|---|---|---|
compression test temperature 350 °C | −663 ± 5 | 2.75 ± 0.16 | 0.33 |
compression test temperature 500 °C | −648 ± 4 | 2.11 ± 0.1 | 0.25 |
compression test temperature 700 °C | −633 ± 6 | 1.24 ± 0.09 | 0.14 |
compression test temperature 900 °C | −625 ± 4 | 3.58 ± 0.14 | 0.42 |
RHT | −653 ± 7 | 5.11 ± 0.26 | 0.6 |
Pure ARMCO Fe | −427 ± 3 | 0.85 ± 0.05 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadirov, P.; Pustov, Y.; Zhukova, Y.; Karavaeva, M.; Sheremetyev, V.; Korotitskiy, A.; Baranova, A.; Prokoshkin, S. Dependence of Electrochemical Characteristics of a Biodegradable Fe-30Mn-5Si wt.% Alloy on Compressive Deformation in a Wide Temperature Range. Metals 2023, 13, 1830. https://doi.org/10.3390/met13111830
Kadirov P, Pustov Y, Zhukova Y, Karavaeva M, Sheremetyev V, Korotitskiy A, Baranova A, Prokoshkin S. Dependence of Electrochemical Characteristics of a Biodegradable Fe-30Mn-5Si wt.% Alloy on Compressive Deformation in a Wide Temperature Range. Metals. 2023; 13(11):1830. https://doi.org/10.3390/met13111830
Chicago/Turabian StyleKadirov, Pulat, Yury Pustov, Yulia Zhukova, Maria Karavaeva, Vadim Sheremetyev, Andrey Korotitskiy, Alexandra Baranova, and Sergey Prokoshkin. 2023. "Dependence of Electrochemical Characteristics of a Biodegradable Fe-30Mn-5Si wt.% Alloy on Compressive Deformation in a Wide Temperature Range" Metals 13, no. 11: 1830. https://doi.org/10.3390/met13111830
APA StyleKadirov, P., Pustov, Y., Zhukova, Y., Karavaeva, M., Sheremetyev, V., Korotitskiy, A., Baranova, A., & Prokoshkin, S. (2023). Dependence of Electrochemical Characteristics of a Biodegradable Fe-30Mn-5Si wt.% Alloy on Compressive Deformation in a Wide Temperature Range. Metals, 13(11), 1830. https://doi.org/10.3390/met13111830