Corrosion of Fixed Orthodontic Appliances: Causes, Concerns, and Mitigation Strategies
Abstract
:1. Introduction
“branch of dentistry that is concerned with the supervision, guidance and correction of the growing and mature dentofacial structures. It includes the diagnosis, prevention, interception and treatment of all forms of malocclusion of the teeth and associated alterations in their surrounding structures”.[1]
Movement | Description | Load (N) |
---|---|---|
Tipping | Predominant movement of the dental crown in the opposite direction. | 0.34–0.59 |
Bodily movement (translation) | Movement that tilts the tooth until its root is in the vertical direction. | 0.69–1.18 |
Root uprighting | Predominant movement of the root. | 0.49–0.98 |
Rotation | Rotation of the tooth around its long axis. | 0.34–0.59 |
Extrusion | Moving the tooth in the opposite direction to the supporting alveolar bone. | 0.34–0.59 |
Intrusion | Moving the tooth into the supporting alveolar bone. | 0.10–0.20 |
2. Metallic Corrosion
2.1. Orthodontic Alloys
Main Composition | Young’s Modulus (GPa) | Yield Strength (MPa) | |
---|---|---|---|
Human molar tooth enamel | Calcium phosphate hydroxyapatite | 70–115 | |
Stainless steel (AISI 316L) | Fe–Cr–Ni | 160–187 | 960–1500 |
Cobalt–chromium | Co–Cr–Fe–Ni | 150–217 | 830–1200 |
α-Titanium | Ti (grade 4) | 104 | 550 |
β-Titanium | Ti–Mo–Sn–Zr | 60–68 | 620–690 |
Ti-6Al-4V | Ti–Al–V (grade 5) | 100–110 | 830–1070 |
Nickel–titanium | Ni–Ti | 32–36 | 200–500 |
2.2. Intraoral Environment
2.3. Corrosion of Metallic Alloys
2.4. Oral Corrosion Forms
2.4.1. Uniform Attack
2.4.2. Galvanic Corrosion
2.4.3. Crevice Corrosion
2.4.4. Pitting Corrosion
2.4.5. Intergranular Corrosion
2.4.6. Selective Leaching
2.4.7. Stress Corrosion
2.4.8. Erosion Corrosion
2.4.9. Microbiologically Induced Corrosion
3. Harmful Effects and Clinical Implications
3.1. Release of Metallic Ions
- “in any post-assemblies which are inserted into pierced ears and other pierced parts of the human body unless the rate of Nickel release from such post-assemblies is less than 0.2 µg/cm2/week (migration limit)”;
- “in articles intended to come into direct and prolonged contact with the skin (…) if the rate of Nickel release from the parts of these articles coming into direct and prolonged contact with the skin is greater than 0.5 µg/cm2/week”;
- “in articles referred to in point 2 where these have a non-nickel coating unless such coating is sufficient to ensure that the rate of nickel release from those parts of such articles coming into direct and prolonged contact with the skin will not exceed 0.5 µg/cm2/week for a period of at least two years of normal use of the article” [183].
3.2. Friction in Orthodontics
Sample Size | Appliances | Matrix and Sampling | Elements and Detection Mode | Mean/Median Concentrations | Main Results | Reference |
---|---|---|---|---|---|---|
34 patients | SS brackets and bands; NiTi archwires. | Saliva. Sampling before treatment, right away or more than 3 weeks after application, and 3–5 weeks after removal. | Ni and Fe. AAS. | Without appliances: Ni: 8.2 ppb, Fe: 148 ppb. Immediately after placement: Ni: 67.6 ppb, Fe: 488 ppb. More than 3 weeks after placement: Ni: 7.8 ppb, Fe: 172 ppb. | Significant increase in Ni and Fe concentrations and absolute masses right after placement, but not after 3 months of usage. | [153] Gjerdet et al. (1991) |
31 patients | SS brackets and archwires; NiTi archwires. | Blood. Sampling before treatment, and after 3 months (with NiTi archwires) and 4–5 months (with SS archwires). | Ni. AAS. | No significant or consistent increase in Ni blood level during orthodontic treatment. | [220] Bishara et al. (1993) | |
47 patients | Brackets, bands and archwires. | Saliva. Sampling before and during treatment (1–2 days, 1 week, and 1 month). | Ni and Cr. AAS. | Before treatment: Ni: 68 ppb, Cr: 68 ppb. During treatment: Ni: 55–74 ppb, Cr: 69–90 ppb. | Ni and Cr concentrations were not significantly affected. | [221] Kerosuo et al. (1997) |
45 patients + 15 controls | Metallic brackets, tubes, and bands; NiTi archwires. | Saliva. Sampling before and during treatment (1 week, 1 month, and 2 months). | Ni and Cr. AAS. | Before treatment: Controls: Ni: 1.16 µg/mL, Cr: 2.20 µg/mL. Patients: Ni: 0.53–0.54 µg/mL, Cr: 1.35–1.41 µg/mL. During treatment: Controls: Ni: 1.33–1.46 µg/mL, Cr: 2.50–3.43 µg/mL. Patients: Ni: 0.49–0.67 µg/mL, Cr: 0.49–1.98 µg/mL. | Fixed orthodontic appliances do not seem to significantly affect Ni and Cr concentrations in saliva. | [177] Kocadereli et al. (2000) |
100 patients | SS brackets, bands and archwires; NiTi archwires. | Saliva and Serum. Sampling before and during treatment (1 week, 1 month, 1 year and 2 years). | Ni and Cr. AAS. | Saliva: Before treatment: Ni: 4.45 ppb, Cr: 0.75 ppb. During treatment: Ni: 4.12–11.53 ppb, Cr: 0.53–1.53 ppb. Serum: Before treatment: Ni: 8.36 ppb, Cr: 6.21 ppb. During treatment: Ni: 7.87–10.27 ppb, Cr: 6.16–10.98 ppb. | The maximum levels of Ni and Cr in saliva were recorded 1 month after starting the orthodontic treatment. Below toxicity levels. The maximum levels of Ni and Cr in serum were recorded 2 months after starting the orthodontic treatment. Below toxicity levels. | [172] Aǧaoǧlu et al. (2001) |
17 patients + 7 controls | SS brackets and archwires. | Saliva. Before and after rinsing with distilled water. | Ni, Cr and Fe. ICP-AES. | Controls before: Ni: 18 ppb, Cr: 20 ppb, Fe: 21 ppb. Controls after: Ni: 11 ppb, Cr and Fe: < DL. Patients before: Ni and Cr: < DL, Fe: 14. Patients after: Ni: 10 ppb, Cr: 27 ppb, Fe: 17 ppb. | No significant difference between controls and patients. Below toxic levels. | [222] Eliades et al. (2003) |
55 patients + 30 controls | SS brackets, bands and archwires; NiTi and CoCr archwires. | Oral mucosa epithelial cells. | Ni, Co. ICP-MS. | Controls: Ni: 0.725 ppb, Co: 0.202 ppb. Patients: Ni: 2.521 ppb, Co: 0.568 ppb. | Statistically significant differences between controls and patients. DNA damage (Comet assays). | [223] Faccioni et al. (2003) |
24 patients + 24 controls | SS brackets, bands and archwires; NiTi archwires. | Saliva and dental plaque (on enamel and metallic surfaces). Sampling at approximately 16 months after starting the orthodontic treatment. | Ni. AAS. | Controls: Filtered saliva Ni: 0.004 µg/g, Saliva sediment Ni: 14.85 µg/g. Dental plaque (all tested surfaces) Ni: 0.380–0.875 µg/g. Patients: Filtered saliva Ni: 0.005 µg/g Saliva sediment Ni: 25.25 µg/g Dental plaque (all tested surfaces) Ni: 0.685–2.690 µg/g | Statistically significant Ni increase in both filter-retained fraction (saliva sediments) and dental plaque. | [178] Fors and Persson (2006) |
15 patients + controls | Orthodontic appliances (not specified). | Hair. During the orthodontic treatment (not specified). | Ni. AAS. | Controls: Ni: 0.64 µg/g. Patients: Ni: 0.50 µg/g, | No statistically significant different between patients and controls. | [224] Levrini et al. (2006) |
10 patients | Brackets, bands, and tubes; NiTi and SS archwires. | Hyperplastic and healthy gingiva. After 2–4 year-treatments with fixed orthodontic appliances. | Ni. AAS. | Ni in healthy gingiva: 1.81 μg/g; Ni in hyperplastic gingiva: 1.32 μg/g. | Non-significant differences between Ni content in healthy and hyperplastic gingiva, but histological differences (toxicity). | [210] Gursoy et al. (2007) |
21 patients | SS brackets and bands | Urine. Before and 2 months after placement | Ni. AAS | Before placement: Ni: 17.67 µg/L. After placement: Ni: 19.89 µg/L. | Statistically significant increase in urinary Ni 2 months after placement. | [225] Menezes et al. (2007) |
10 patients | SS brackets, bands, and ligatures; NiTi archwires. | Saliva. Sampling before and during treatment (1 and 3 weeks). | Ni and Cr. AAS. | Before treatment: Ni: 31.62 ppb, Cr: 38.82 ppb. After 1 week: Ni: 113.20 ppb, Cr: 83.15 ppb. After 3 weeks: Ni: 65.24 ppb, Cr: 64.21 ppb. | Statistically significant increase in salivary Ni and Cr concentrations during the orthodontic treatment when compared with the basal levels. | [181] Singh et al. (2008) |
30 patients + 30 controls | SS brackets, bands and archwires; NiTi archwires, | Saliva and mucosa cells. 1 sampling, | Ni, Cr, and Co. AAS. | Controls: Ni: 12.26 ppb, Cr: 3.46 ppb, Co: 0.44 ppb. Patients: Ni: 21.74 ppb, Cr: 4.24 ppb, Co: 0.84 ppb. | Significantly higher Ni concentrations in patients when compared with controls. No differences regarding Cr and Co levels. | [226] Amini et al. (2008) |
30 patients | SS brackets | Saliva. Sampling before and after 10 min, 24 h, 7 days, 30 days, and 60 days of usage. | Ni, Cr and Fe. AAS. | Before treatment: Ni: 5.25 µg/L, Cr: 0.64 µg/L, Fe: 94.03 µg/L. During treatment: Ni: 1.69–16.01 µg/L, Cr: 0.52–1.72 µg/L, Fe: 28.31–103.58 µg/L. | Concentration peak for Ni and Cr 10 min after placing the orthodontic appliances, but no significant variations for all metals throughout the study time. | [171] De Souza and Menezes (2008) |
18 patients | SS brackets and bands; NiTi archwires. | Saliva. Before and during the orthodontic treatment (immediately after placing the SS components; immediately before and after placing the NiTi archwires; and after 4 and 8 weeks). | Ni. ICP-MS. | Before placing any component: Ni: 34 µg/L. After placing SS components: Ni: 78 µg/L. After placing the archwires: Ni: 56 µg/L. During the remaining study time points: Ni: 28–34 µg/L. | Statistically significant increase in salivary Ni immediately after placing the SS and NiTi components. | [143] Petoumeno et al. (2009) and [131] Petoumeno et al. (2008) |
15 patients, divided according to the bracket type | SS, Ti, and Ni-free brackets and tubes. | Oral mucosa cells. Sampling before and 30 days after placing the appliances. | Ni, Cr, Fe, Ti, Co, Mn, and Mo. ICP-MS. | Before treatment: Ni: 3.44 µg/L, Cr: 0.00 µg/L, Fe: 1.95 µg/L, Ti: 0.98 µg/L, Co: 0.00 µg/L, Mn: 0.32 µg/L, Mo: 0.13 µg/L. After 30 days: Ni: 0.00–0.04 µg/L, Cr: 0.00–0.34 µg/L, Fe: 1.24–5.36 µg/L, Ti: 0.82–3.04 µg/L, Co: 0.00 µg/L, Mn: 0.58–1.08 µg/L, Mo: 0.00 µg/L. | Increased Ti and Mn in cells exposed to the SS components. Higher Cr and Fe detected in cells exposed to Ni-free components. Increased Mn in cells exposed to Ti components. Ti components are the most biocompatible. | [227,227] Fernández-Miñano et al. (2011) |
20 patients + 20 controls | SS brackets and bands; SS and NiTi archwires. | Oral mucosa cells. Sampling after debonding (removal) of the orthodontic appliances, and 30 days later. Minimum treatment time of 18 months. | Ni and Cr. ICP-MS. | Immediately after debonding: Controls Ni: 3.86 ppb, Controls Cr: 2.71 ppb, Patients Ni: 4.09 ppb, Patients Cr: 3.63 ppb. 30 days after debonding: Controls Ni: 3.48 ppb, Controls Cr: 2.26 ppb, Patients Ni: 3.83 ppb, Patients Cr: 2.94 ppb. | No statistically significant differences between the groups regarding Ni and Cr concentrations. Genotoxic damage during orthodontic treatment reverted. | [228] Natarajan et al. (2011) |
28 patients divided in 4 groups according to the brackets/archwires type combination+ 18 controls | SS brackets and bands; SS and Ti brackets; SS and NiTi archwires. | Oral mucosa cells. Sampling before and during treatment (3 and 6 months after placement). | Ni and Cr. AAS. | Before treatment: Ni: 0.52 ppb, Cr: 0.31 ppb. After 3 months: Ni: 0.68 ppb, Cr: 0.41 ppb. After 6 months: Ni: 0.78 ppb, Cr: 0.78 ppb. | Statistically significant increase in Cr content fat 3 months, as well as in Ni and Cr content after 6 months. DNA damage. SS brackets/SS archwire combination shows higher biocompatibility, whereas the Ti brackets/NiTi archwires are the less biocompatible. | [180] Hafez et al. (2011) |
20 patients divided according to the bracket type | SS conventional or self-ligating brackets and bands; NiTi archwires. | Saliva. Sampling before and during treatment (1, 7 and 30 days after placement). | Ni and Cr. AAS. | Before treatment: Ni: 0.68 µg/L, Cr: 5.19–6.06 µg/L. After 1 day: Conventional—Ni: 1.95 µg/L, Cr: 21.78 µg/L. Self-ligating—Ni: 2.72 µg/L, Cr: 10.65 µg/L. After 7 days: Conventional—Ni: 2.89 µg/L, Cr: 36.69 µg/L. Self-ligating—Ni: 4.95 µg/L; Cr: 14.34 µg/L. After 30 days: Conventional—Ni: 1.18 µg/L; Cr: 8.98 µg/L. Self-ligating—Ni: 1.12 µg/L; Ce: 6.31 µg/L | Non-significant increase in Ni and Cr concentrations during the orthodontic treatment. Below dietary levels. | [170] Sahoo et al. (2011) |
30 patients + 30 controls | Hyrax appliances (which include 4 orthodontic bands with Ag-based soldering). | Saliva. Sampling before and after placement (10 min, 24 h, 7 days, 30 days, and 60 days). | Cd, Cu, Zn and Ag. AAS. | Controls: Cd: 0.15–0.18 µg/L, Cu: 3.81–6.54 µg/L, Zn: 0.01 µg/L, Ag: < DL. Patients before placement: Cd: 0.14 µg/L, Cu: 16.98 µg/L, Zn: 0.05 µg/L, Ag: 0.80 µg/L. Patients after placement: Cd: 0.18–0.71 µg/L, Cu: 12.63–70.60 µg/L, Zn: 0.05–0.20 µg/L, Ag: 2.01–11.53 µg/L. | All ions showed significant increases 10 min after placing the orthodontic appliances. | [229] Freitas et al. (2011) |
28 patients + 18 controls | Orthodontic appliances (non-specified). | Hair. 1.5–2 years orthodontic treatment. | Ni, Cr, Mn, and Fe. ICP-OES. | Controls: Ni: 0.3642 µg/g d.h.m, Cr: 0.1298 µg/g d.h.m, Mn: 0.4850 µg/g d.h.m, Fe: 11.74 µg/g d.h.m. Patients: Ni: 0.5073 µg/g d.h.m, Cr: 0.1331 µg/g d.h.m, Mn: 0.5739 µg/g d.h.m, Fe: 12.22 µg/g d.h.m. | Non-significant differences in the hair metal contents between controls and patients. | [230] Mikulewicz et al. (2011c) |
28 patients + 28 controls | SS brackets, and bands archwires. | Saliva. 12–18 months. | Ni and Cr. AAS. | Patients: Ni: 18.5 ng/mL, Cr: 2.6 ng/mL. Control: Ni: 11.9 ng/mL, Cr: 2.2 ng/mL. | Statistically significant difference for Ni between the two studied groups. Below toxic levels. | [231] Amini et al. (2012) |
16 patients | SS brackets and tubes; NiTi archwires. | Saliva. Before the orthodontic treatment, immediately after and 8 weeks after placing the NiTi archwires. | Ni. ICP-MS. | Before treatment: Ni: 32 µg/L. Just after placing the NiTi archwire: Ni: 51 µg/L. 8 weeks after placing the NiTi archwire: Ni: 34 µg/L. | Statistically significant Ni increase just after placing the NiTi archwire. Non-significant difference after 8 weeks. | [232] Ousehal and Lazrak (2012) |
20 patients | SS brackets and bands; SS and NiTi archwires | Saliva. Sampling before and during the treatment (6 and 12 months). | Ni and Cr. AAS. | Before treatment: Ni: 9.75 µg/L, Cr: 3.86 µg/L. After 6 months: Ni: 10.37 µg/L, Cr: 4.60 µg/L. After 12 months: Ni: 8.32 µg/L, Cr: 2.04 µg/L. | Statistically insignificant change in Ni concentrations throughout the treatment time. Small but significant decrease in salivary Cr after 1 year. | [233] Amini et al. (2012) |
40 patients + 50 controls | SS brackets and bands; SS and NiTi archwires. | Saliva. Sampling during the orthodontic treatment (ranging from 1 to 32 months after start, 1 sample per patients). | Ni and Cr. ICP-MS and ICP-OES. | Controls: Ni: 2.29 µg/L, Cr: 3.23 µg/L. Patients: Ni: 4.19 µg/L, Cr: 2.83 µg/L. | Statistically significant increase in salivary Ni and decrease in Cr between patients and controls. Non-toxic levels. | [234] Talic et al. (2013) |
32 patients | SS brackets and bands; SS and NiTi archwires. | Saliva. Sampling before and during the treatment (20 days, and 3 and 6 months after starting). | Ni and Cr. AAS. | Before treatment: Ni: 5.76 µg/L, Cr: 2.6 µg/L. After 20 days: Ni: 6.54 µg/L, Cr: 3.68 µg/L. After 3 months: Ni: 5.13 µg/L, Cr: 3.41 µg/L. After 6 months: Ni: 5.61 µg/L, Cr: 3.39 µg/L. | Salivary Ni and Cr concentration did not significantly change. | [174] Yassaei et al. (2013) |
24 patients + controls | SS brackets and NiTi archwires. | Hair. Sampling 16 weeks after starting the orthodontic treatment. | Ni. AAS. | Before treatment: Controls Ni: 0.245 µg/g, Patients Ni: 0.350 µg/g. After 16 weeks: Controls Ni: 0.382 µg/g, Patients Ni: 0.637 µg/g. | Statistically significant differences between controls and patients after 16 weeks. | [235] Abtahi et al. (2013) |
30 patients | SS brackets and bands; NiTi archwires. | Saliva. Before placing the orthodontic treatment, 3 months before introducing stress; and 15 and 30 min after introducing stress. | Ni, Cr. AAS. | Before stress: Ni: 11.9–12.4 µg/L, Cr: 4.1–4.4 µg/L. After stress: Ni: 1.6–14.4 µg/L, Cr: 4.8–5.1 µg/L. | Significant increase in Ni concentrations after stress. No significant alteration in Cr concentrations. | [236] Amini et al. (2013) |
20 patients + 20 controls | SS brackets, bands, tubes, and ligatures; NiTi and SS archwires | Oral mucosa cells. Sampling between 13–15 months after starting the orthodontic treatment. | Ti, V, and Zr. ICP-MS. | Controls: Ti: 5.14 ng/g, Zr: < DL. Patients: Ti: 5.23 ng/g, Zr: 0.54 ng/g. | Non-significant differences in both groups. | [237] Martín-Cameán et al. (2014) |
20 patients + 20 controls | SS brackets, bands, tubes, and ligatures; NiTi and SS archwires, | Oral mucosa cells. Sampling between 13–15 months after starting the orthodontic treatment. | Ni, Cr, Co, and Cu. ICP-MS. | Controls: Ni: 4.3 µg/L, Cr: 2.3 µg/L, Co: 0.6 µg/L, Cu: 4.9 µg/L. Patients: Ni: 24.8 µg/L, Cr: 17.5 µg/L, Co: 11.6 µg/L, Cu: 8.5 µg/L. | Significantly higher values for all metals for patients when compared with controls. | [238] Martín-Cameán et al. (2014) |
70 patients + 56 controls | SS brackets, bands, tubes, and ligatures; NiTi and SS archwires. | Hair. Minimum duration of the orthodontic treatment of 24 months. | Ni, Cr, Fe, Mn, Cu. AAS. | Controls: Ni: 0.36 µg/g, Cr: 0.36 µg/g, Fe: 25.3 µg/g, Cu: 33 µg/g, Mn: 0.23 µg/g. Patients: Ni: 0.33 µg/g, Cr: 0.33 µg/g, Fe: 24.86 µg/g, Cu: 24 µg/g, Mn: 0.42 µg/g. | Significant increase for Mn concentrations only. | [239] Martín-Cameán et al. (2014) |
24 pigs (12 controls) | SS plates simulating orthodontic appliances. | Hair, kidneys, liver, lungs, aorta, and oral mucosa. Up to 6 months. | Ni, Cr, Fe, Cd, Co, Cu, Mn, Mo, Si and Zn. ICP-OES. | Higher increase in toxic metals registered in the aorta (for Ni), cheek (for Ni) and hair (for Cr). | Products of corrosion passed into selected tissues of pigs. Below toxicity levels. | [240] Mikulewicz et al. (2014) |
47 patients | SS brackets and ligatures; NiTi archwires. | Hair. Sampling before and during the orthodontic treatment (4, 8 and 12 months). | Ni, Cr and Fe. ICP-OES. | Before treatment: Ni: 0.275 mg/kg Cr: 0.0201 mg/kg Fe: 13.2 mg/kg After 1 year: Ni: 0.422 mg/kg Cr: 0.158 mg/kg Fe: 14.2 mg/kg | Statistically significant increase in Cr content only. Below toxicity levels. | [241] Mikulewicz et al. (2015) |
30 patients, divided in two groups according to the type of brackets | Conventional or MIM SS brackets and tubes; NiTi archwires. | Saliva. Immediately before and 60 days after starting the treatment. | Ni and Cr. AAS. | Before the treatment: Conventional—Ni: 7.12 µg/L, Cr: 0.25 µg/L. MIM—Ni: 8.62 µg/L, Cr: 0.42 µg/L. 60 days after treatment: Conventional—Ni: 12.57 µg/L;,Cr: 0.35 µg/L. MIM—Ni: 8.86 µg/L, Cr: 0.26 µg/L. | Significant increase in Ni content in each group. Not significant differences between the groups. | [242] Amini et al. (2015) |
24 patients | SS brackets and bands; NiTi and SS archwires. | Hair. Immediately before and 6 months after starting the treatment. | Ni and Cr. AAS. | Before the treatment: Ni: 0.1380 µg/g d.h.m, Cr: 0.1455 µg/g d.h.m. After 6 months: Ni: 0.6715 µg/g d.h.m, Cr: 0.1683 µg/g d.h.m. | Ni and Cr content in hair significantly increased (387 and 16%, respectively). | [243] Amini et al. (2015) |
13 patients | SS brackets, bands, tubes, lingual sheath, transpalatal arch and archwires; NiTi archwires. | Saliva. Sampling before and during the orthodontic treatment (1 week, and 1 and 3 months after placement). | Ni and Cr. AAS. | Before treatment: Ni: 1.156 µg/L, Cr: 11.570 µg/L. After 1 week: Ni: 6.841 µg/L, Cr: 70.386 µg/L. After 1 month: Ni: 3.403 µg/L, Cr: 21.254 µg/L. After 3 months: Ni: 3.124 µg/L, Cr: 20.002 µg/L. | Significant increase in salivary Ni and Cr after starting the orthodontic treatment. Peak concentrations 1 week after placement. | [176] Dwivedi et al. (2015) |
30 patients | SS brackets and bands; NiTi and SS archwires. | Saliva. Sampling before and during treatment (after aligning phase and 10–12 months after placement). | Ni and Cr. ICP-MS. | Before treatment: Ni: 48.78 ppb, Cr: 69.74 ppb. After aligning stage: Ni: 59.19 ppb, Cr: 102.68 ppb. 10–12 months after start: Ni: 46.33 ppb, Cr: 87.07 ppb. | Significant increase in salivary Ni and Cr after the initial aligning phase. | [182] Nayak et al. (2015) |
50 patients with 4–6 months of fixed orthodontic treatment | Fixed orthodontic appliances (not specified). | Saliva. Sampling after 1 week without using mobile phone (controls); then after 1 week of regular usage (experimental group). | Ni. ICP-MS. | Experimental group: Ni: 16.22 ng/L. Controls: Ni: 12.84 ng/L. | Statistically significant increase in Ni release for the experimental group when compared with the controls. | [244] Saghiri et al. (2015) |
1 patient | Fixed appliances (not specified). | Saliva, alveolar bone, and gingiva. Collection during periodontal cosmetic surgery and exostosis removal. | Ni. AAS. | Ni in saliva: 986.4 ppb. Ni in bone: 779.5 ppb. Ni in gingiva: 620.5 ppb. | High Ni accumulation in each sample type. | [245] Arcila et al. (2015) |
30 patients | SS bands and closed coil springs; SS self-ligating brackets with NiTi clip; NiTi archwire and open springs. | Saliva. Sampling before and during the orthodontic treatment (immediately after placing brackets and bands and 2 weeks later; immediately after placing the archwires and 4 and 8 weeks later). | Ni. ICP-MS. | Before treatment: Ni: 21.85 µg/L. Immediately after placing brackets and bands: Ni: 85.34 µg/L. Immediately after placing the NiTi archwires: Ni: 57.74 µg/L. For the remaining sampling times: Ni: 13.73–19.83 µg/L. | Significant increase in salivary Ni concentrations after brackets and bands insertion, as well as after placing the archwire. Return to basal levels after 4 weeks. Below dietary intake. | [246] Gölz et al. (2016) |
24 patients | SS brackets; NiTi archwires. | Gingival crevicular fluid. Sampling before and during treatment (1 and 6 months). | Ni and Cr. AAS. | Before treatment: Ni: 3.894 µg/g, Cr: 1.978 µg/g. 1 month after starting: Ni: 5.913 µg/g, Cr: 4.135 µg/g. 6 months after starting: Ni: 19.810 µg/g, Cr: 13.760 µg/g. | Significant increase in Ni and Cr (up to 510 and 700%, respectively) during the treatment, as well as gingival inflammation promotion. | [247] Amini et al. (2016) |
42 patients, divided according to the bracket type | MIM tubes and SS brackets; NiTi, Cu-NiTi, or epoxy-coated NiTi archwire. | Saliva. Sampling before and 2 months after starting the orthodontic treatment. | Ni. AAS. | Before treatment: Ni: 10.4571 µg/L. After 2 months: Ni: 11.0799 µg/L. | Statistically significant increase in salivary Ni concentration but depends on the archwire type. | [173] Masjedi et al. (2016) |
10 patients | SS brackets and ligatures; bands with tubes and lingual sheaths (not specified); NiTi archwires. | Saliva. Sampling before and during treatment (10 days and 1 month after placement). | Ni and Cr. ICP-OES. | Before treatment: Ni: 0.0039 mg/L, Cr: 0.0024 mg/L. After 10 days: Ni: 0.0288 mg/L, Cr: 0.0037 mg/L. After 30 days: Ni: 0.0370 mg/L, Cr: 0.0103 mg/L. | Statistically significant increase in salivary Ni after 10 and 30 days when compared with controls, as well as for salivary Cr between the 10th and the 30th day. | [248] Kumar et al. (2016) |
47 patients with different dietary habits (coffee, yoghurt, juice and vinegar consumption) | Fixed orthodontic appliances (not specified). | Human hair. Sampling at the beginning of the treatment, and after 4, 8 and 12 months. | Ni and Cr. ICP-OES. | At the beginning: Ni: 0.131–0.331 mg/kg, Cr: 0.00578–0.0338 mg/kg. After 4 months: Ni: 0.222–0.505 mg/kg, Cr: 0.0620–0.446 mg/kg. After 8 months: Ni: 0.252–0.444 mg/kg, Cr: 0.0862–0.292 mg/kg. After 12 months: Ni: 0.207–0.500 mg/kg, Cr: 0.124–0.191 mg/kg. | Consuming foods and drinks with low pH can intensify metal release of Cr and Ni during the orthodontic treatment. | [249] Wołowiec et al. (2017) |
30 patients | Fixed orthodontic appliances (not specified). | Saliva, biofilm, and oral mucosa cells. Before and during orthodontic treatment (1 week and 6 months). | Ni. AAS. | Before treatment: Saliva—Ni: 2.213 ppm, Biofilm—Ni: 4.943 ppm, Oral mucosa—Ni: 3.327 ppm. After 1 week: Saliva—Ni: 2.627 ppm, Biofilm—Ni: 5.75 ppm, Oral mucosa—Ni: 3.683 ppm. After 6 months: Saliva—Ni: 3.03 ppm, Biofilm—Ni: 6.917 ppm, Oral mucosa—Ni: 3.143 ppm. | Significant increase in Ni levels, especially in biofilm samples. | [250] Causado-Vitola et al. (2017) |
46 patients, divided according to the bracket type | SS MIM or conventional brackets and tubes; NiTi and SS archwires. | Hair. Sampling before and 6 months after starting the orthodontic treatment. | Ni and Cr. AAS. | Before treatment: Ni: 0.1600 µg/g d.h.m, Cr: 0.1657 µg/g d.h.m. After 6 months: Ni: 0.3199 µg/g d.h.m, Cr: 0.3066 µg/g d.h.m. | Statistically significant Ni and Cr content increase, regardless the bracket type. | [251] Masjedi et al. (2017) |
37 patients | Metallic Fixed appliances (not specified). | Saliva. Sampling immediately before placing the fixed appliances, and after 1 and 24 weeks. | Ni. AAS. | Increased salivary Ni concentration, probably responsible for modifying the oxidative/antioxidative balance of saliva. | [252] Buckzo et al. (2017) | |
60 patients + 30 controls | Conventional appliances: SS brackets and bands, and NiTi archwires; aesthetic appliances: polycarbonate brackets and tubes and Rh-coated NiTi archwires. | Saliva. Sampling from patients undergoing an orthodontic treatment for 1–6 months. One collection per patient. | Ni, Cr, Fe, and Cu. Total reflection XRF. | Controls: Ni: 4.14 µg/L, Cr: 10.32 µg/L, Fe: 32.04, Cu: 11.40. Patients with conventional appliances: Ni: 22.20 µg/L, Cr: 89.45 µg/L, Fe: 517.77 µg/L, Cu: 15.10 µg/L. | No significant differences regarding Ni and Cr concentrations between conventional or aesthetical and control groups. Ni and Cr influenced by the type of appliances. No differences in Fe and Cu between groups. | [253,253] Lages et al. (2017) |
42 patients, divided in two groups (mobile phone users and nun-users) | Fixed orthodontic appliances (not specified). | Saliva. 6–9 months after placement. | Ni. ICP-OES. | Mobile phone users: Ni: 0.012 ppb. Non-users: Ni: 0.0083 ppb. | Mobile phone radiations can influence Ni ion release, but a statistically non-significant difference was obtained. | [254] Nanjannawar et al. (2017) |
30 patients | SS brackets and NiTi archwire | Gingival crevicular fluid. Sampling before and during treatment (1 and 6 month) | Ni and Cr. AAS | Before treatment: Ni: 3.2 µg/g Cr: 4.1 µg/g 1 month after starting: Ni: 4.5 µg/g Cr: 4.9 µg/g 6 months after starting: Ni: 14.2 µg/g Cr: 21.4 µg/g | Significant increase in Ni and Cr concentrations during the orthodontic treatment. | [255] Bhasin et al. (2017) |
24 patients + 28 controls | Scalp hair. Sampling before and 1 year after placement. | Ni and Cr. AAS. | Before: Controls—Ni: 0.085 µg/g, Cr: 0.299 µg/g. Patients—Ni: 0.061 µg/g, Cr: 0.304 µg/g. 1 year after: Controls—Ni: 0.086 µg/g, Cr: 0.258 µg/g. Patients—Ni: 0.149 µg/g, Cr: 0.339 µg/g. | Statistically significant differences in both Ni and Cr contents in scalp hair between the groups after 1 year of orthodontic treatment. | [256] Jamshidi et al. (2018) | |
42 patients with metallic brackets + 42 with ceramic brackets | SS or ceramic brackets; NiTi archwires. | Saliva. Sampling before and 6 months after starting the orthodontic treatment. | Ni, Cr, Ti, Co, Cu, and Zn. ICP-MS. | Metallic brackets: Before: Ni: 4.24 µg/L, Cr: 1.95 µg/L, Ti: 1.68 µg/L, Co: 0.46 µg/L, Cu: 23.31; µg/L, Zn: 220.67 µg/L. After 6 months: Ni: 5.04 µg/L, Cr: 1.01 µg/L, Ti: 9.29 µg/L, Co: 0.32 µg/L, Zn: 168.45 µg/L. | Statistically significant increase in salivary Ti, and statistically significant decrease in Cr and Zn. Non-significant differences difference between both groups. | [257] Jurela et al. (2018) |
20 healthy patients + 20 periodontal patients | Brackets (not specified) and NiTi archwires. | Saliva. Sampling 2 months after starting the orthodontic treatment. | Ni. ICP-MS. | Healthy patients: Ni: 182.8 ng/mL, Cr: 6.35 ng/mL. Periodontal patients: Ni: 338.2 ng/mL, Cr: 7.45 ng/mL. | Statistically significant differences in salivary Ni concentrations between healthy and periodontal patients. Inconclusive for Cr. | [258] Amini et al. (2019) |
60 patients divided into 2 groups according to the oral health products used (fluorinated vs. nonfluorinated) | SS brackets and NiTi archwires. | Gingival crevicular fluid. Sampling before and after 1 week, 1 month and 6 months after placement. | Ni, Cr, Ti, and Mn. | Nonfluorinated: Before—Ni: 0.49 µg/L; Ti: 0.49 µg/L. 7 days—Ni: 0.52 µg/L; Ti: 0.51 µg/L. 30 days—Ni: 13.42 µg/L; Ti: 40.09 µg/L; Cr: 0.50 µg/L; Mn: 0.50 µg/L. 6 months—Ni: 0.51 µg/L; Ti: 4.80 µg/L; Cr: 0.49 µg/L; Mn: 0.49 µg/L. Fluorinated: Before—Ni: 0.51 µg/L; Ti: 0.51 µg/L. 7 days—Ni: 0.52 µg/L; Ti: 0.50 µg/L. 30 days: Ni: 101.78 µg/L; Ti: 64.69 µg/L; Cr: 12.00 µg/L. 6 months—Ni: 0.51 µg/L; Ti: 0.51 µg/L; Cr: 0.53 µg/L; Mn: 0.48 µg/L. | Statistically significant increase in Ni, Cr, and Ti concentrations at 30 days only. Higher metal content in patients using fluoride-containing oral hygiene products, with statistically significant difference for Ni when compared with patients using nonfluorinated products. | [259] Chitra et al. (2019) |
50 patients + 30 controls | SS brackets and bands; SS and NiTi archwires. | Saliva and serum. Sampling before and during the orthodontic treatment (1 week, 3 months, 1 year, and 1.5 years). | Ni, Cr and Zn. AAS. | Saliva—before treatment: Controls—Ni: 4.33 ppb, Cr: 1.13 ppb, Zn: 10.73 ppb; Patients—Ni: 4.24 ppb, Cr: 1.18 ppb, Zn: 11.8 ppb. Saliva—1.5 years after: Controls—Ni: 5.02 ppb, Cr: 1.27 ppb, Zn: 10.24 ppb; Patients—Ni: 67 ppb, Cr: 30.8 ppb, Zn: 164.7 ppb. Serum—before treatment: Controls—Ni: 8.31 ppb, Cr: 6.18 ppb, Zn: 29.1 ppb; Patients—Ni: 8.46 ppb, Cr: 6.46 ppb, Zn: 28.3 ppb; Serum—1.5 years after: Controls—Ni: 8.47 ppb, Cr: 6.02 ppb, Zn: 30.1 ppb; Patients—Ni: 81.65 ppb, Cr: 35.6 ppb, Zn: 597.16 ppb. | Statistically significant increase in salivary and serum concentrations of Ni, Cr, and Zn between controls and patients. Below toxic levels. | [260] Quadras et al. (2019) |
100 patients + 40 controls | Fixed orthodontic appliances (not specified). | Serum. Sampling between 3 weeks and over 18 months. | Ni, Cr, Fe, Cu, Mn, and Zn. ICP-MS. | Controls: Ni: 26.95 µg/L, Cr: 44.45 µg/L, Fe: 200.72 µg/L, Cu: 31.43 µg/L, Mn: 13.75 µg/L, Zn: 32.90 µg/L. Patients: Ni: 61.40 µg/L, Cr: 44.28 µg/L, Fe: 454.92 µg/L, Cu: 55.42 µg/L, Mn: 18.85 µg/L, Zn: 143.70 µg/L. | All ions’ concentrations increased in the serum, except for Cr. Ni concentration in serum was dependent on treatment time. | [261] Moghadam et al. (2019) |
35 patients | Fixed orthodontic appliances (not specified) involving NiTi and SS archwires. | Saliva and urine. Sampling before and during the orthodontic treatment (3 and 6 months). | Ni and Ti. ICP-OES. | Statistically significant differences in the Ni concentrations in saliva between 3 and 6 months, as well as Ti in urine in the same periods. | [198] Velasco-Ibañez et al. (2020) | |
20 patients + 20 controls | SS brackets, bands and archwires. | Saliva. Sampling before and 6–12 months after placement. | Ni. AAS. | Controls: Before: 9.82 ng/mL, After: 10.21 ng/mL. Patients: Before: 9.90 ng/mL, After: 15.83 ng/mL. | Higher but statistically insignificant increase in Ni concentrations in patients when compared with the control group. | [262] Butt et al. (2020) |
43 patients divided in groups according to soldering of the lingual arch + 21 controls | Lingual arches composed of SS bands and wires and soldered or welded SS wires. | Saliva. Sampling before and after placement (7, 15 and 30 days). | Ni, Cr, Fe, Cu, Zn, Ag, Cd, and Sn. ICP-MS. | Controls: Ni: 8.0–6.0 µg/L, Cr: 3.5–3.9 µg/L, Fe: 227.9–289.9 µg/L, Cu: 23.1–34.2 µg/L, Zn: 461.0–499.8 µg/L, Ag: 10.1–18.3 µg/L, Cd: 0.6–1.0 µg/L, Sn: 16.6–25.3 µg/L. With lingual arches: Ni: 5.3–34.5 µg/L, Cr: 3.3–4.2 µg/L, Fe: 201.0–314.8 µg/L, Cu: 28.0–40.7 µg/L, Zn: 384.3–963.4 µg/L, Ag: 3.7–20.8 µg/L, Cd: 0.5–1.5 µg/L, Sn: 11.4–27.7 µg/L. | No statistically significant differences for most metallic ions. Below toxic levels. | [263] Schacher et al. (2020) |
40 patients divided into 2 groups according to the toothpaste used (nonfluorinated or fluorinated) | Brackets (non-specified) and NiTi archwires. | Gingival crevicular fluid. Before and after placement (7 and 30 days, and 6 months). | Ni and Cr. ICP-MS. | Nonfluorinated toothpaste [ng/mL]: Before: Ni: 0.49, Cr: 0.48; 7 days: Ni: 0.52, Cr: 0.52; 30 days: Ni: 13.4, Cr: 40.6; 60 days: Ni: 0.54, Cr: 4.9; Fluorinated toothpaste [ng/mL]: Before: Ni: 0.52, Cr: 0.52; 7 days: Ni: 0.54, Cr: 0.53; 30 days: Ni: 100.2, Cr: 62.4; 60 days: Ni: 0.52, Cr: 0.52. | Statistically significant increase in Ni and Cr release for patients with prescribed fluorinated toothpastes. | [264] Pritam et al. (2021) |
12 patients with fixed appliances + 15 patients with removal appliances | Fixed appliances (NiCr brackets and NiTi archwires); removal aligners (polyurethane). | Saliva. Sampling before and 3 months after starting the treatment. | From Al (Z = 13) to Y (Z = 39). Total reflection XRF. | No significant alterations regarding metals from metal corrosion and inflammatory reactions in patients under dental plaque control. | [265] Zeffa et al. (2021) | |
20 patients | SS brackets (other components were not specified). | Saliva. Before and during treatment (2 weeks, and 1, 4, and 6 months after start). | Ni, Cr, Fe, Ti, and Cu. ICP-OES. | Before treatment: Ni: 3.94 µg/L, Cr:2.37 µg/L, Fe: 45.13 µg/L, Ti: 48.25 µg/L, Cu: 1.53 µg/L. During treatment: Ni: 9.73–34.22 µg/L, Cr: 8.20–17.70 µg/L, Fe: 56.71–99.96 µg/L, Ti: 42.29–62.53 µg/L, Cu: 8.12–25.31 µg/L. | Maximum ion concentrations obtained 1 month after starting the orthodontic treatment. Increase in saliva pH and flow rate. Kinetic model proposed. | [266] Hamadamin (2022) |
17 patients | SS brackets, bands, and tubes; NiTi archwires. | Saliva. Sampling before and during treatment (2 days, and 1, 4, and 12 weeks). | Ni, Cr, and Fe. ICP-OES. | Ni: 132–175 µg/L, Cr: 171–192 µg/L, Fe: 826–1023 µg/L. | No statistically significant variations registered throughout the study time. | [116] Fróis et al. (2022) |
60 patients | SS brackets; metallic archwires. | Saliva. Sampling 1,3 and 5 years after starting the treatment. | Ni. ICP-MS. | 1 week after starting: Ni: 1.25–1.74 ppb; 2 weeks after starting: Ni: 5.76–6.07 ppb; 3 weeks after starting: Ni: 4.32–4.78 ppb. | Significant increase between the 1st and the 2nd sampling time, reportedly linked to the use of hand-held mobile phones. | [267] Rajendran et al. (2023) |
3.3. Oral Hygiene with Fluoride-Based Products
4. Orthodontic Alloys Modification
4.1. Non-Metallic Components
Brackets | Archwires | |
---|---|---|
Polymeric | Polyurethane (PU). Polycarbonate (PC). Polyoxymethylene (POM). Fiberglass-reinforced PC. | Polyethylene terephthalate (PET) polytetrafluoroethylene (PTFE). Polyetheretherketone (PEEK). Fiber-reinforced polymer composites, and 3-layered wire (SiO2/silicone resin/nylon). |
Ceramic | Alumina. Zirconia. |
4.2. Nominal Composition Optimization
4.3. Manufacturing Processes
4.4. Surface Modification and Coatings
5. Protective Coatings in Orthodontics
5.1. Metal-Based Coatings
5.1.1. Transition Metal-Based Coatings
- Rhodium (Rh):
- Gold (Au) and Platinum (Pt):
- Silver (Ag):
- Titanium (Ti):
- Zinc (Zn):
5.1.2. Metal-Based Oxides, Nitrides and Carbides Coatings
- Ti–O System:
Coatings | Substrate Materials | Deposition Methods | Literature References |
---|---|---|---|
Transition Metal-based Coatings | |||
Rh | NiTi archwires | Commercial | [339] Katić et al. (2014) |
Rh | NiTi archwires | Commercial | [340] Katić et al. (2014) |
Rh | NiTi archwires | Commercial | [63] Kim et al. (2014) |
Rh | NiTi archwires | Commercial | [344] Trolic (2017) |
Rh | NiTi archwires | Commercial | [332] Katić et al. (2017) |
Rh | NiTi archwires | Commercial | [253] Lages et al. (2017) |
Rh | NiTi archwires | Commercial | [310] Matias et al. (2018) |
Rh | NiTi archwires | Commercial | [411] Asiry et al. (2018) |
Rh | SS archwires | Commercial | [348] Usui et al. (2018) |
Rh | NiTi archwires | Commercial | [341] Katić et al. (2018) |
Rh | NiTi and SS archwires | Commercial | [343] Nsaif et al. (2019) |
Rh | NiTi archwires | Commercial | [335] Alsanea and Shehri (2019) |
Rh | NiTi archwires | Commercial | [346] Trolic et al. (2019) |
Rh | NiTi archwires | Commercial | [347] Costa Lima (2019) |
Rh | NiTi archwires | Commercial | [345] Trolic et al. (2019) |
Rh | NiTi archwires | Commercial | [279] Mlinaric et al. (2019) |
Rh | NiTi archwires | Commercial | [337] Batista et al. (2020) |
Rh | NiTi archwires | Commercial | [336] Pinzan-Vercelino et al. (2020) |
Rh | NiTi archwires | Commercial | [350] Ramasamy et al. (2020) |
Rh | NiTi archwires | Commercial | [412] Madasamy et al. (2021) |
Rh | NiTi archwires | Commercial | [338] Osmani et al. (2022) |
Rh | NiTi archwires | Commercial | [342] Amorim et al. (2022) |
Rh | SS archwires | Commercial | [49] Ito et al. (2022) |
Rh | β-Ti archwires | Commercial | [349] Albawardi et al. (2022) |
Rh-Au | NiTi archwires | Commercial | [334] Iijima et al. (2012) |
Rh-Au | NiTi archwires | Commercial | [333] Albuquerque et al. (2017) |
Au | SS archwires | Commercial | [63] Kim et al. (2014) |
Au | NiTi archwires | Commercial | [64] Krishnan et al. (2014) |
Au | SS brackets | Commercial | [62] Toy et al. (2014) |
Au | SS archwires | Commercial | [49] Ito et al. (2022) |
Pt-NPs | NiTi archwires | Electrochemical deposition | [353] Khonsari et al. (2011) |
Ag | SS and NiTi archwires | Thermal evaporation | [357] Mhaske et al. (2015) |
Ag | SS brackets | Electroplating | [372] Arash et al. (2015) |
Ag | SS brackets | Magnetron sputtering | [398] Fatani et al. (2017) |
Ag | SS brackets | PVD | [358] Ghasemi et al. (2017) |
Ag | SS wires | Electroplating | [374] Usui et al. (2017) |
Ag | SS wires | Electroplating | [373] Shirakawa et al. (2017) |
Ag | SS archwires | Thermal vacuum evaporation | [370] Shah et al. (2018) |
Ag | SS brackets | Galvanic, PVD, and PIIID | [359] Meyer-Kobbe et al. (2019) |
Ag | SS brackets and archwires | Thermal vacuum evaporation | [371] Shah et al. (2023) |
Nano-Ag | SS brackets | PVD | [356] Metin-Gürsoy et al. (2016) |
Nano-Ag | SS brackets | PVD | [360] Metin-Gürsoy et al. (2017) |
Nano-Ag | SS brackets and archwires | Chemical deposition | [361] Espinosa-Cristóbal et al. (2018) |
Ag-NPs | SS bands | Thermal evaporation | [363] Prabha et al. (2016) |
Ag-NPs | SS bands | Thermal evaporation | [362] Bindu et al. (2019) |
Ag-NPs | SS archwires | Hydrothermal synthesis | [365] Gonçalves et al. (2020) |
Ag-NPs | SS and Co–Cr brackets | Commercial | [48] Jasso-Ruiz et al. (2020) |
Ag-NPs | NiTi archwires | Electrodeposition | [366] Gil et al. (2020) |
Ag-NPs | SS brackets | Thermal evaporation | [367] Zeidan et al. (2022) |
Ag-NPs | Metallic brackets | Laser ablation | [413] Tawakal et al. (2023) |
Ag-NPs | SS bands | Electrostatic spray-assisted vapor deposition | [364] Bahrami et al. (2023) |
Ag-NPs | SS archwires | Electrochemical deposition | [368] Anand et al. (2023) |
Ag-NPs + TiO2-NPs | SS archwires | Electrochemical deposition | [368] Anand et al. (2023) |
Ti | NiTi archwires | Magnetron sputtering | [375] Ozeki et al. (2003) |
Ti | NiTi archwires | Sputtering | [376] Anuradha et al. (2015) |
Zn | SS archwires | Thermal evaporation | [381] Karandish et al. (2021) |
Metallic Oxides, Nitrides and Carbides Coatings | |||
TiO2 | SS archwires | Sol–gel dip-coating | [389] Chun et al. (2007) |
TiO2 | NiTi archwires | Oxidation treatment | [387] Espinar et al. (2011) |
TiO2 | SS brackets | Magnetron sputtering | [395] Shah et al. (2011) |
TiO2 | NiTi archwires | Oxidation process | [414] Satiyorini and Pintowantoro (2013) |
TiO2 | NiTi archwires | Oxidation process | [415] Pintowantoro and Setiyorini (2013) |
TiO2 | SS and NiTi archwires | Sol–gel dip-coating | [390] Chhattani et al. (2014) |
TiO2 | NiTi archwires | Commercial | [64] Krishnan et al. (2014) |
TiO2 | SS archwires | Sol–gel dip-coating | [392] Özyildiz et al. (2014) |
TiO2 | metallic brackets | Spin-on deposition | [399] Zhang et al. (2015) |
TiO2 | SS brackets | PVD | [358] Ghasemi et al. (2017) |
TiO2 | SS brackets | Magnetron sputtering | [397] Baby et al. (2017) |
TiO2 | SS brackets | Magnetron sputtering | [398] Fatani et al. (2017) |
TiO2 | Composite archwires | Magnetron sputtering | [409] Liu et al. (2017) |
TiO2 | SS brackets | Magnetron sputtering | [407] Supriadi et al. (2019) |
TiO2 | SS brackets | Magnetron sputtering | [416] Supriadi et al. (2019) |
TiO2 | β-Ti and NiTi archwires | PEO | [404] Jung et al. (2019) |
TiO2 | SS archwires | PVD | [403] Mollabasci et al. (2020) |
TiO2 | NiTi wires | Plasma oxidation | [406] Campeol et al. (2020) |
TiO2 | NiTi wires | NH3 treatments | [417] Kurtoğlu et al. (2020) |
TiO2 | SS brackets | Magnetron sputtering | [418] Math et al. (2021) |
TiO2 | SS archwires | Sol–gel dip-coating | [400] Kielan-Grabowska et al. (2021) |
TiO2 | SS wires | Sol–gel dip-coating | [401] Bącela et al. (2022) |
N-doped TiO2 | SS brackets | Magnetron sputtering | [394] Cao et al (2013) |
N-doped TiO2 | composite archwires | Magnetron sputtering | [409] Liu et al. (2017) |
N-doped TiO2 | SS brackets | Magnetron sputtering | [393] Salehi et al. (2018) |
TiO2-xNy | Metallic brackets | Magnetron sputtering | [402] Li et al. (2014) |
TiOxNy | NiTi wires | NH3 treatments | [417] Kurtoğlu et al. (2020) |
Nano-Ag/TiO2 | metallic brackets | Spin-on deposition | [399] Zhang et al. (2015) |
Ag-TiO2 | SS brackets | Magnetron sputtering | [398] Fatani et al. (2017) |
TiO2 + Ag-NPs | SS archwires | Sol–gel dip-coating | [400] Kielan-Grabowska et al. (2021) |
TiO2 + Ag-NPs | SS wires | Sol–gel dip-coating | [401] Bącela et al. (2022) |
TiN | NiTi archwires | Commercial | [419] Kim and Johnson (1999) |
TiN | SS brackets | Ion plating | [420] Kao et al. (2002) |
TiN | NiTi and NiTiCu archwires | Nitrogen gas difffusion | [421] Gil et al. (2004) |
TiN | NiTi wires | Commercial | [422] Iijima et al. (2010) |
TiN | SS brackets | Ion plating | [423] Huang et al. (2010) |
TiN | SS brackets | Ion plating | [424] Kao et al. (2011) |
TiN | SS brackets | Commercial | [115] Saporeti et al. (2012) |
TiN | NiTi archwires | Chemical deposition | [414] Setiyorini and Pintowantoro (2013) |
TiN | NiTi archwires | Commercial | [339] Katić et al. (2014) |
TiN | NiTi wires | Commercial | [332] Katić et al. (2017) |
TiN | NiTi archwires | Commercial | [340] Katić et al. (2014) |
TiN | NiTi archwires | Commercial | [64] Krishnan et al. (2014) |
TiN | NiTi archwires | Commercial | [425] Rongo et al. (2014) |
TiN | SS brackets | Ion plating | [426] Zuo et al. (2015) |
TiN | NiTi and β-Ti archwires | Commercial | [427] Rongo et al. (2016) |
TiN | NiTi archwires | Commercial | [344] Musa Trolić (2017) |
TiN | NiTi archwires | Commercial | [341] Katić et al. (2018) |
TiN | SS and NiTi archwires | Ion plating | [428] Sugisawa et al. (2018) |
TiN | NiTi archwires | Commercial | [345] Trolic et al. (2019) |
TiN | NiTi archwires | Commercial | [279] Mlinaric et al. (2019) |
TiN | NiTi archwires | Commercial | [346] Musa Trolic et al. (2019) |
TiN | NiTi archwires | NH3 treatments | [417] Kurtoğlu et al. (2020) |
TiN | SS brackets and wires; NiTi archwires | Magnetron sputtering | [429] Arici et al. (2021) |
TiN | SS brackets | Cathodic cage | [430] Teixeira et al. (2021) |
TiN | NiTi archwires | Commercial | [338] Osmani et al. (2022) |
TiN | SS archwires | Ion plating | [49] Ito et al. (2022) |
Ti/TiN | NiTi archwires | Magnetron sputtering | [431] Liu et al. (2014) |
TiAlN | β-Ti archwires | Cathodic arc PVD | [432] Krishnan et al. (2011) |
TiAlN | β-Ti archwires | Cathodic arc PVD | [433] Krishnan et al. (2012) |
TiN doped with CaP | SS brackets | Cathodic cage | [430] Teixeira et al. (2021) |
ZrO2 | SS, NiTi and β-Ti archwires | Sol–gel | [434] Golshah and Feyli (2022) |
Al2O3 | SS brackets and wires; NiTi archwires | Magnetron sputtering | [429] Arici et al. (2021) |
Al-SiO2 | NiTi archwires | Magnetron sputtering | [435] Wu et al. (2022) |
Black oxide | NiTi archwires | Commercial | [436] Krishnan et al. (2012) |
ZnO | SS brackets | Magnetron sputtering | [418] Math et al. (2021) |
CrN | SS brackets and wires; NiTi archwires | Magnetron sputtering | [429] Arici et al. (2021) |
CrC | SS archwires | Electroplating | [348] Usui et al. (2018) |
WC/C | β-Ti archwires | Magnetron sputtering | [432] Krishnan et al. (2011) |
WC/C | β-Ti archwires | Magnetron sputtering | [433] Krishnan et al. (2012) |
Metal Oxide-Based NPs coatings | |||
ZnO | SS brackets | Spray pyrolysis | [437] Ramazanzadeh et al. (2015) |
ZnO-NPs | SS wires | Chemical solution method | [438] Kachoei et al. (2015) |
ZnO | SS archwires | Bath immersion | [439] Behroozian et al. (2016) |
ZnO | NiTi archwires | Chemical deposition | [440] Kachoei et al. (2016) |
ZnO | NiTi archwires | Electrochemical deposition | [441] Hammad et al. (2020) |
ZnO | NiTi archwires | Chemical precipitationCVDSol–gel method | [442] Gholami et al. (2021) |
ZnO | SS brackets and archwires | Sol–gel method | [443] Elhelbawy and Ellaithy (2021) |
ZnO-NPs | SS bracktes | Thermal evaporation | [367] Zeidan et al. (2022) |
ZnO-NPs | NiTi archwires | Hydrothermal method | [444] Palanivel et al. (2022) |
ZnO-NPs | SS archwires | Chemical precipitationHydrothermal method | [445] Tanbakuchi et al. (2022) |
AlO-NPs | NiTi archwires | Hydrothermal method | [444] Palanivel et al. (2022) |
CuO | SS brackets | Spray pyrolysis | [437] Ramazanzadeh et al. (2015) |
CuO-NPs | SS brackets | Dip-coating | [446] Ameli et al. (2022) |
CuO-NPs | SS brackets | Dip-coating | [447] Ameli et al. (2022) |
ZnO-CuO | SS brackets | Spray pyrolysis | [437] Ramazanzadeh et al. (2015) |
Ag-NPs+ZnO-NPs | SS brackets | Thermal evaporation | [367] Zeidan et al. (2022) |
Ag-HA-NPs | SS brackets | Dip-coating | [446] Ameli et al. (2022) |
Ag-HA-NPs | SS brackets | Dip-coating | [447] Ameli et al. (2022) |
TiO2-NPs | NiTi archwires | Magnetron sputtering | [448] Venkatesan et al. (2020) |
TiO2-NPs | SS brackets | Dip-coating | [446] Ameli et al. (2022) |
TiO2-NPs | SS brackets | Dip-coating | [447] Ameli et al. (2022) |
TiO2-NPs | SS archwires | Dip-coating | [449] Silveira et al. (2022) |
TiO2-NPs | SS archwires | Magnetron sputtering | [368] Anand et al. (2023) |
TiO2-NPs | β-Ti and NiTi archwires | Dip-coating | [450] Chaturvedi et al. (2023) |
IF-NPs-reinforced Metal-based Coatings | |||
WS2-reinforced Ni | SS archwires | Electrochemical co-deposition | [451] Redlich et al. (2008) |
WS2-reinforced Ni | SS archwires | Electrochemical co-deposition | [452] Samorodnitzky-Naveh et al. (2010) |
WS2-reinforced Ni-P | SS archwires | Electroless deposition | [453] Katz et al. (2006) |
WS2-reinforced Ni-P | SS archwires | Electroless deposition | [454] Redlich et al. (2008) |
MoS2-reinforced Ni | SS archwires | Electrochemical co-deposition | [455] Gracco et al. (2019) |
WS2-reinforced Co | NiTi archwires | Co-electrodeposition | [456] Samorodnitzky-Naveh et al. (2009) |
WS2-reinforced Co | NiTi archwires | Co-electrodeposition | [452] Samorodnitzky-Naveh et al. (2010) |
- Ti–N System:
- Zr–O and Al–O Systems:
- Zn–O System:
- W–C, W–N, Cr–C, and Cr–N Systems:
5.1.3. Metal Oxide-Based Nanoparticles Coatings
5.1.4. Inorganic Fullerene-like Nanoparticles (IF-NPs)-Reinforced Metal-Based Coatings
5.2. Polymer-Based Coatings
5.2.1. Thermoplastic and Thermoset Coatings
- Polytetrafluoroethylene (PTFE):
- Epoxy Resins:
- Polyether-ether-ketone (PEEK):
Coatings | Substrates | Deposition Method | Literature References |
---|---|---|---|
Thermoplastic and Thermoset Coatings | |||
PTFE | NiTi and SS archwires | Commercial | [330] Neumann et al. (2002) |
PTFE | NiTi and SS archwires | Commercial | [479] Husman et al. (2002) |
PTFE | SS brackets | n.s. | [480] Demling et al. (2010) |
PTFE | SS and NiTi archwires | Commercial | [478] Farronato et al. (2012) |
PTFE | NiTi archwire | Commercial | [490] Zegan et al. (2012) |
PTFE | NiTi archwire | Commercial | [64] Krishnan et al. (2014) |
PTFE | NiTi archwires | Commercial | [425] Rongo et al. (2014) |
PTFE | NiTi archwires | Commercial | [475] Mareci et al. (2015) |
PTFE | NiTi archwires | Commercial | [481] Ryu et al. (2015) |
PTFE | NiTi archwires | Commercial | [484] Choi et al. (2015) |
PTFE | NiTi archwires | Commercial | [476] Earar et al. (2016) |
PTFE | NiTi archwires | Commercial | [427] Rongo et al. (2016) |
PTFE | NiTi archwires | Commercial | [333] Albuquerque et al. (2017) |
PTFE | NiTi archwires | Commercial | [505] Rego et al. (2017) |
PTFE | NiTi archwires | Commercial | [477] Matei et al. (2016) |
PTFE | NiTi archwires | Commercial | [373] Shirakawa et al. (2017) |
PTFE | NiTi archwires | Commercial | [485] Rego et al. (2017) |
PTFE | NiTi archwires | Commercial | [310] Matias et al. (2018) |
PTFE | NiTi archwires | Commercial | [411] Asiry et al. (2018) |
PTFE | NiTi archwires | Commercial | [483] Dokku et al. (2018) |
PTFE | SS archwires | Commercial | [487] Shahabi et al. (2018) |
PTFE | NiTi archwires | Commercial | [335] Alsanea and Shehri (2019) |
PTFE | NiTi archwires | Commercial | [347] Costa Lima (2019) |
PTFE | SS, NiTi and β-Ti archwires | Thermal spraying | [473] Kameda et al. (2020) |
PTFE | NiTi archwires | Commercial | [474] Abdulkader et al. (2020) |
PTFE | NiTi archwires | Commercial | [489] Abdulkhabeer et al. (2020) |
PTFE | NiTi archwires | Commercial | [486] Jejurikar et al. (2020) |
PTFE | NiTi archwires | Commercial | [337] Batista et al. (2020) |
PTFE | NiTi archwires | Commercial | [482] Elsaka et al. (2021) |
PTFE | SS archwires | Commercial | [492] Lin et al. (2021) |
PTFE | β-Ti and SS archwires | Spray treatment | [506] Zhou et al. (2023) |
Epoxy | NiTi arcwhires | Commercial | [419] Kim and Johnson (1999) |
Epoxy | NiTi archwires | Commercial | [501] Elayyan et al. (2008) |
Epoxy | NiTi archwires | Commercial | [498] Elayyan et al. (2010) |
Epoxy | NiTi archwires | Electrostatic powder deposition | [138] Bandeira et al. (2011) |
Epoxy | NiTi archwires | Commercial | [496] Alavi et al. (2012) |
Epoxy | NiTi archwires | Commercial | [494] Raji et al. (2014) |
Epoxy | NiTi archwires | Commercial | [64] Krishnan et al. (2014) |
Epoxy | NiTi archwires | Commercial | [63] Kim et al. (2014) |
Epoxy | NiTi archwires | Commercial | [497] Pop et al. (2015) |
Epoxy | NiTi archwires | Commercial | [484] Choi et al. (2015) |
Epoxy | NiTi archwires | Commercial | [333] Albuquerque et al. (2017) |
Epoxy | NiTi archwires | Commercial | [505] Rego et al. (2017) |
Epoxy | SS archwires | Commercial | [374] Usui et al. (2017) |
Epoxy | NiTi archwires | Commercial | [485] Rego et al. (2017) |
Epoxy | SS archwires | Commercial | [348] Usui et al. (2018) |
Epoxy | NiTi archwires | Commercial | [310] Matias et al. (2018) |
Epoxy | NiTi archwires | Commercial | [411] Asiry et al. (2018) |
Epoxy | NiTi archwires | Commercial | [483] Dokku et al. (2018) |
Epoxy | NiTi archwires | Commercial | [335] Alsanea and Shehri (2019) |
Epoxy | NiTi archwires | Commercial | [499] Dragomirescu et al. (2019) |
Epoxy | NiTi archwires | Commercial | [495] Shamohammadi et al. (2019) |
Epoxy | NiTi archwires | Commercial | [474] Abdulkader et al. (2020) |
Epoxy | NiTi archwires | Commercial | [336] Pinzan-Vercelino et al. (2020) |
Epoxy | NiTi archwires | Commercial | [489] Abdulkhabeer et al. (2020) |
Epoxy | NiTi archwires | Commercial | [486] Jejurikar et al. (2020) |
Epoxy | NiTi archwires | Commercial | [350] Ramasamy et al. (2020) |
Epoxy | NiTi archwires | Commercial | [412] Madasamy et al. (2021) |
Epoxy | SS archwires | Commercial | [492] Lin et al. (2021) |
Epoxy | NiTi archwires | Commercial | [342] Amorim et al. (2022) |
Epoxy | β-Ti and SS archwires | Spray treatment | [506] Zhou et al. (2023) |
Epoxy | NiTi archwires | Commercial | [500] Aboalnaga et al. (2023) |
PEEK | Nitinol wires | Dip-coating deposition | [503] Sheiko et al. (2016) |
PEEK tubes | SS, NiTi, and CoCr archwires | Tube coverage | [504] Shirakawa et al. (2018) |
PE | NiTi archwires | Commercial | [330] Neumann et al. (2002) |
PE | NiTi archwires | Commercial | [479] Husman et al. (2002) |
PEN (PE naphthalate) | SS archwires | Commercial | [61] Ito et al. (2022) |
Polyamide | NiTi archwires | Dipping treatment | [507] Bravo et al. (2014) |
Epoxy + PTFE | NiTi archwires | Dip-coating deposition | [502] Shao et al. (2009) |
PTFE + polyester | SS and NiTi archwires | Commercial | [491] da Silva et al. (2015) |
Other Polymer Coatings | |||
Lysozyme | Composite archwires | Coating protein deposition | [318] He et al. (2020) |
Hexamethyldisiloxane (HMDSO) | SS brackets | PECVD | [508] Tupinambá et al. (2017) |
Organosilane | SS brackets | Sol–gel method | [509] Oliveria et al. (2015) |
2-methacryloyloxyethyl phosphorylcholine | SS archwires | Chemical deposition | [510] Kunimatsu et al. (2022) |
Chitosan | Brackets (n.s.) | Freeze-drying | [511] Want et al. (2023) |
Chitosan nanoparticles | SS brackets and archwires | Sol–gel method | [443] Elhelbawy and Ellaithy (2021) |
Ag–chitosan nanoparticles | Metallic brackets | Laser ablation | [413] Tawakal et al. (2023) |
Polyoxazoline + tryptophan | SS brackets | Plasma polymerization/Immobilization | [512] Kumarasinghe et al. (2021) |
1H,1H,2H,2H-perfluorodecyltrimethoxysilane(FAS) + bovine serum albumin (BSA) | SS brackets and archwires | Chemical deposition | [513] Liu et al. (2018) |
PVA hydrogel | SS archwires | Chemical deposition | [514] MingWen et al. (2023) |
Polydopamine + honokiol C-dots | SS brackets | Hydrothermal method/chemical deposition | [515] Wang et al. (2023) |
Butyl-3-methylimidazolium chloride | NiTi archwires | Ionic liquid coating | [516] Ahmed et al. (2021) |
Parylene | SS archwires | Commercial | [492] Lin et al. (2021) |
Parylene with Ag–Pt layer | NiTi archwires | Commercial | [334] Iijima et al. (2012) |
Parylene with Ag–Pt layer | NiTi archwires | Commercial | [484] Choi et al. (2015) |
Ag/biopolymer bilayer | NiTi archwires | Commercial | [63] Kim et al. (2014) |
Ag/polymer bilayer | NiTi archwires | Commercial | [482] Elsaka et al. (2021) |
Silicone | β-Ti and SS archwires | Dip coating | [506] Zhou et al. (2023) |
Ceramic-reinforced epoxy composite | β-Ti and SS archwires | Spray deposition | [506] Zhou et al. (2023) |
Polymer (?) | NiTi archwires | Commercial | [496] Alavi et al. (2012) |
Polymer (?) | NiTi archwires | Commercial | [425] Rongo et al. (2014) |
Polymer (?) | NiTi archwires | Commercial | [427] Rongo et al. (2016) |
Polymer (?) | NiTi archwires | Commercial | [488] Argalji et al. (2017) |
Polymer (?) | NiTi archwires | Commercial | [499] Dragomirescu et al. (2019) |
Polymer (?) | NiTi archwires | Commercial | [495] Shamohammadi et al. (2019) |
Polymer (?) | NiTi archwires | Commercial | [482] Elsaka et al. (2021) |
NPs reinforced Polymer Coatings | |||
TiO2 reinforced Epoxy | NiTi archwires | Electrophoretic deposition | [517] Xu et al. (2019) |
ZnO reinforced PVP | NiTi archwires | Electrospinning | [442] Gholami et al. (2021) |
ZnO reinforced PVA | NiTi archwires | Polymer composite coating | [442] Gholami et al. (2021) |
- Polyethylene (PE) and Polyethylene Naphthalate (PEN):
- Polyamides:
- Other Polymer Coatings:
5.2.2. Polymeric-Based Composite Coatings
5.3. Ceramic-Based Coatings
5.3.1. Hydroxyapatite (HA)
5.3.2. Bioactive Glasses
5.3.3. Silicon-Based Coatings
5.3.4. Carbon-Based Coatings
- C and C–H Systems:
- C–N System:
Coatings | Substrate Materials | Deposition Methods | Literature References |
---|---|---|---|
Hydroxyapatite and Bioactive Glass Coatings | |||
Bioactive glass | SS archwires | Electrophoretic deposition | [526] Kawaguchi et al. (2020) |
SiO2-reinforced HA | NiTi archwires | Electrodeposition | [524] Dimasruhin et al. (2014) |
HA | NiTi archwires | Electrodeposition | [414] Satiyorini and Pintowantoro (2013) |
Silicon-based Coatings | |||
SiN | SS brackets and archwires | PECVD | [527] Rapiejko et al. (2009) |
SiC | SS brackets | PECVD | [527] Rapiejko et al. (2009) |
SiO2-NPs | SS archwires | Commercial ceramic paint | [449] Silveira et al. (2022) |
Carbon-based Coatings | |||
DLC (a-C:H) | NiTi archwires | Ion beam plating | [535] Kobayashi et al. (2005) |
DLC (a-C:H) | NiTi archwires | CVD | [536] Kobayashi et al. (2005) |
DLC (a-C:H) | NiTi archwires | Arch discharge ion plating | [538] Ohgoe et al. (2006) |
DLC (a-C:H) | NiTi archwires | Arch discharge ion plating | [537] Ohgoe et al. (2007) |
DLC (a-C:H) | NiTi archwires | Arch discharge ion plating | [545] Kobayashi et al. (2007) |
DLC (a-C:H) | SS brackets | PECVD | [423] Huang et a. (2010) |
DLC (a-C:H) | NiTi and SS archwires | PBIID | [542] Muguruma et al.(2011) |
DLC (a-C:H) | SS brackets | PBIID | [540] Muguruma et al. (2013) |
DLC (a-C:H) | NiTi archwires | PECVD | [539] Huag et al. (2013) |
DLC (a-C) | SS archwires | MCECR plasma sputtering | [548] Kang et al. (2015) |
DLC (a-C:H) | SS backet slots | PECVD | [543] Akaike et al. (2015) |
DLC (a-C:H) | SS bracket slots | PECVD | [541] Akaike et al. (2016) |
DLC-F (a-C:H:F) | SS bracket slots | PECVD | [541] Akaike et al. (2016) |
DLC-Si (a-C:H:Si) | SS bracket slots | PECVD | [541] Akaike et al. (2016) |
DLC (a-C:H) | SS archwires | PECVD | [546] Zhang et al. (2016) |
DLC (a-C:H) | SS archwires | PBIID | [544] Muguruma et al. (2018) |
DLC (a-C:H) | NiTi archwires | PBIID | [547] Tantiwinyupong et al. (2019) |
DLC (a-C) | SS brackets | Magnetron sputtering | [549] Danisman et al. (2021) |
CNx | SS archwires | IBAD | [554] Wei et al. (2011) |
Carbon-based Nanocomposite Coatings | |||
Graphene sheets embedded in carbon | SS archwires | MCECR plasma sputtering | [555] Pan et al. (2022) |
Graphene sheets embedded in carbon | SS archwires | MCECR plasma sputtering | [556] Wang et al. (2022) |
- Carbon-based Nanocomposite Coatings:
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAS | Atomic absorption spectrometry |
a-CNx | Amorphous carbon nitride |
AISI | American Iron and Steel Institute |
CAW | Composite archwires |
CVD | Chemical vapor deposition |
CoF | Coefficient of friction |
d.h.m. | Dry hair mass |
DL | Detection limit |
DLC | Diamond-like carbon |
EDS | Energy-dispersive spectroscopy |
FCC | Face centered cubic |
GSEC | Graphene sheets embedded carbon |
HA | Hydroxyapatite |
HGF | Human gingival fibroblasts |
IARC | International Agency for Research on Cancer |
IBAD | Ion beam-assisted deposition |
ICP-AES/ICP-OES | Inductively coupled plasma-atomic/optical emission spectrometry |
ICP-MS | Inductively coupled plasma mass spectroscopy |
IF-NPs | Inorganic fullerene-like nanoparticles |
ISO | International organization for standardization |
MAO | Micro-arc oxidation |
MCECR | Mirror-confinement-type electron cyclotron resonance |
MIC | Microbiologically induced corrosion |
NPs | Nanoparticles |
PC | Polycarbonate |
PECVD | Plasma-enhanced chemical vapor deposition |
PVD | Physical vapor deposition |
PE | Polyethylene |
PEEK | Poly-ether-ether-ketone |
PEN | Polyethylene naphthalate |
PET | Polyethylene terephthalate |
PEO | Plasma electrolytic oxidation |
PH | Precipitation hardening |
PIIID | Plasma immersion ion implantation and deposition |
POM | Polyoxymethylene |
PP | Polyphenylene |
PTFE | Polytetrafluoroethylene |
PU | Polyurethane |
PVA | Polyvinyl alcohol |
PVP | Polyvinylpyrrolidone |
SCC | Stress corrosion cracking |
SEM | Scanning electron microscopy |
SMA | Shape memory alloy |
SRB | Sulphur reducing bacteria |
SS | Stainless steel |
XRF | X-ray fluorescence |
References
- Dental Board of Australia. Dental List of Recognised Specialties, Related Specialist Titles and Definitions. Available online: https://www.dentalboard.gov.au/Registration-Standards.aspx (accessed on 10 December 2022).
- Guo, L.; Feng, Y.; Guo, H.-G.; Liu, B.-W.; Zhang, Y. Consequences of Orthodontic Treatment in Malocclusion Patients: Clinical and Microbial Effects in Adults and Children. BMC Oral Health 2016, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Meng, M.; Law, C.S.; Rao, Y.; Zhou, X. Common Dental Diseases in Children and Malocclusion. Int. J. Oral Sci. 2018, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, G.; Vena, F.; Negri, P.; Pagano, S.; Barilotti, C.; Paglia, L.; Colombo, S.; Orso, M.; Cianetti, S. Worldwide Prevalence of Malocclusion in the Different Stages of Dentition: A Systematic Review and Meta-Analysis. Eur. J. Paediatr. Dent. 2020, 21, 115–122. [Google Scholar] [CrossRef]
- Cenzato, N.; Nobili, A.; Maspero, C. Prevalence of Dental Malocclusions in Different Geographical Areas: Scoping Review. Dent. J. 2021, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Redzepagic Vrazalica, L.; Ilic, Z.; Laganin, S.; Dzemidzic, V.; Tiro, A. An Epidemiological Study of Malocclusion and Occlusal Traits Related to Different Stages of Dental Development. S. Eur. J. Orthod. Dentofac. Res. 2017, 4, 9–13. [Google Scholar] [CrossRef]
- Mtaya, M.; Brudvik, P.; Astrom, A.N. Prevalence of Malocclusion and Its Relationship with Socio-Demographic Factors, Dental Caries, and Oral Hygiene in 12- to 14-Year-Old Tanzanian Schoolchildren. Eur. J. Orthod. 2009, 31, 467–476. [Google Scholar] [CrossRef]
- Jamilian, A.; Kiaee, B.; Sanayei, S.; Khosravi, S.; Perillo, L. Orthodontic Treatment of Malocclusion and Its Impact on Oral Health-Related Quality of Life. Open Dent. J. 2016, 10, 236–241. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. Malocclusion and Dentofacial Deformity in Contemporary Society. In Contemporary Orthodontics; Mosby: St. Louis, MO, USA; Elsevier: Amsterdam, The Netherlands, 2012; pp. 2–18. ISBN 978032308317. [Google Scholar]
- Abdallah, M.-N.; Lou, T.; Retrouvey, J.-M.; Suri, S. Biomaterials Used in Orthodontics: Brackets, Archwires, and Clear Aligners. In Advanced Dental Biomaterials; Khurshid, Z., Najeeb, S., Zafar, M.S., Sefat, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 541–579. ISBN 978-0-08-102476-8. [Google Scholar]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. Contemporary Orthodontic Appliances. In Contemporary Orthodontics; Mosby: St. Louis, MO, USA; Elsevier: Amsterdam, The Netherlands, 2012; pp. 347–389. ISBN 978032308317. [Google Scholar]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. Mechanical Principles in Orthodontic Force Control. In Contemporary Orthodontics; Mosby: St. Louis, MO, USA; Elsevier: Amsterdam, The Netherlands, 2012; pp. 312–346. ISBN 978032308317. [Google Scholar]
- Wen, Y.; Niu, Q.; Wang, A.; Yang, H.; Wang, H.; Jin, Z. Clear Aligner Treatment for an Adult with Severe Anterior Open Bite Malocclusion. AJO-DO Clin. Companion 2022, 2, 409–417. [Google Scholar] [CrossRef]
- Puppin Filho, A. Má Oclusão de Classe I Com Biprotrusão e Ausência Dos Primeiros Molares Inferiores. Dent. Press J. Orthod. 2011, 16, 119–129. [Google Scholar] [CrossRef]
- Aljhani, A.S.; Zawawi, K.H. Nonextraction Treatment of Severe Crowding with the Aid of Corticotomy-Assisted Orthodontics. Case Rep. Dent. 2012, 2012, 694527. [Google Scholar] [CrossRef]
- Kaya, D.; Taner, T.U. Management of an Adult with Spaced Dentition, Class III Malocclusion and Open-Bite Tendency. Eur. J. Dent. 2011, 5, 121–129. [Google Scholar] [CrossRef]
- Schroeder, M.A.; Schroeder, D.K.; Júnior, J.C.; da Silva Santos, D.J. Orthodontic Traction of Impacted Maxillary Canines Using Segmented Arch Mechanics. Dent. Press J. Orthod. 2019, 24, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Cobourne, M.T.; DiBiase, A.T.; Seehra, J.; Papageorgiou, S.N. Should We Recommend Early Overjet Reduction to Prevent Dental Trauma? Br. Dent. J. 2022, 233, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Fooladi, B.; MacCarthy, T.; Maloney, T.; Suri, L. Category 4: Class II Division 2 Malocclusion with Deep Overbite. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Carriére, L. Nonsurgical Correction of Severe Skeletal Class III Malocclusion. J. Clin. Orthod. 2016, 50, 216–230. [Google Scholar] [PubMed]
- de Oliveira, S.R. Class III Malocclusion with Unilateral Posterior Crossbite and Facial Asymmetry. Dent. Press J. Orthod. 2010, 15, 182–191. [Google Scholar] [CrossRef]
- Moro, A.; Borges, S.W.; Spada, P.P.; Morais, N.D.; Correr, G.M.; Chaves, C.M.; Cevidanes, L.H.S. Twenty-Year Clinical Experience with Fixed Functional Appliances. Dent. Press J. Orthod. 2018, 23, 87–109. [Google Scholar] [CrossRef]
- Tsichlaki, A.; Chin, S.Y.; Pandis, N.; Fleming, P.S. How Long Does Treatment with Fixed Orthodontic Appliances Last? A Systematic Review. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 308–318. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. The First Stage of Comprehensive Treatment: Alignment and Leveling. In Contemporary Orthodontics; Mosby: St. Louis, MO, USA; Elsevier: Amsterdam, The Netherlands, 2012; pp. 530–555. ISBN 978032308317. [Google Scholar]
- Business Wire Inc. Business Wire. Available online: https://www.businesswire.com/news/home/20200728005527/en/Global-Orthodontic-Supplies-Market-Worth-4.6-Billion (accessed on 10 September 2020).
- Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. The Biology Basis of Orthodontic Therapy. In Contemporary Orthodontics; Mosby: St. Louis, MO, USA; Elsevier: Amsterdam, The Netherlands, 2012; pp. 278–311. ISBN 978032308317. [Google Scholar]
- Eliades, T.; Athanasiou, A.E. In Vivo Aging of Orthodontic Alloys: Implications for Corrosion Potential, Nickel Release, and Biocompatibility. Angle Orthod. 2002, 72, 222–237. [Google Scholar]
- Chaturvedi, T.P.; Upadhayay, S.N. An Overview of Orthodontic Material Degradation in Oral Cavity. Indian J. Dent. Res. 2010, 21, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Sifakakis, I.; Eliades, T. Adverse Reactions to Orthodontic Materials. Aust. Dent. J. 2017, 62, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Shukoor, K.M.; Shaj, F.; Shabeer, N.N.; Jayarajan, J. Nickel Allergies in Orthodontic Treatment. Int. J. Prev. Clin. Dent. Res. 2016, 3, 143–146. [Google Scholar] [CrossRef]
- Agarwal, P.; Upadhyay, U.; Tandon, R.; Kumar, S. Nickel Allergy and Orthodontics. Asian J. Oral Health Allied Sci. 2011, 1, 61–63. [Google Scholar]
- EN 10088-1; Stainless Steels—Part 1: List of Stainless Steels. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
- Malik, N.; Dubey, R.; Kallury, A.; Chauksye, A.; Shrivastav, T.; Kapse, B.R. A Review of Orthodontic Archwires. J. Orofac. Res. 2015, 5, 6–11. [Google Scholar] [CrossRef]
- Olszewska, A.; Hanć, A.; Barałkiewicz, D.; Rzymski, P. Metals and Metalloids Release from Orthodontic Elastomeric and Stainless Steel Ligatures: In Vitro Risk Assessment of Human Exposure. Biol. Trace Elem. Res. 2020, 196, 646–653. [Google Scholar] [CrossRef]
- Brüngger, D.; Koutsoukis, T.; Al Jabbari, Y.S.; Hersberger-Zurfluh, M.; Zinelis, S.; Eliades, T. A Comparison of the Compositional, Microstructural, and Mechanical Characteristics of Ni-Free and Conventional Stainless Steel Orthodontic Wires. Materials 2019, 12, 3424. [Google Scholar] [CrossRef]
- Brantley, W.; Berzins, D.; Iijima, M.; Tufekçi, E.; Cai, Z. Structure/Property Relationships in Orthodontic Alloys. In Orthodontic Applications of Biomaterials; Eliades, T., Brantley, W.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–38. ISBN 9780081003831. [Google Scholar]
- Wendl, B.; Wiltsche, H.; Lankmayr, E.; Winsauer, H.; Walter, A.; Muchitsch, A.; Jakse, N.; Wendl, M.; Wendl, T. Metal Release Profiles of Orthodontic Bands, Brackets, and Wires: An in Vitro Study. J. Orofac. Orthop. Fortschritte Kieferorthopädie 2017, 78, 494–503. [Google Scholar] [CrossRef]
- Arango, S.; Peláez-Vargas, A.; García, C. Coating and Surface Treatments on Orthodontic Metallic Materials. Coatings 2013, 3, 1–15. [Google Scholar] [CrossRef]
- Arango Santander, S.; Luna Ossa, C.M. Stainless Steel: Material Facts for the Orthodontic Practitioner. Rev. Nac. Odontol. 2015, 11. [Google Scholar] [CrossRef]
- Walker, M.P.; Ries, D.; Kula, K.; Ellis, M.; Fricke, B. Mechanical Properties and Surface Characterization of Beta Titanium and Stainless Steel Orthodontic Wire Following Topical Fluoride Treatment. Angle Orthod. 2007, 77, 342–348. [Google Scholar] [CrossRef]
- Castro, S.M.; Ponces, M.J.; Lopes, J.D.; Vasconcelos, M.; Pollmann, M.C.F. Orthodontic Wires and Its Corrosion—The Specific Case of Stainless Steel and Beta-Titanium. J. Dent. Sci. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Cuy, J.L.; Mann, A.B.; Livi, K.J.; Teaford, M.F.; Weihs, T.P. Nanoindentation Mapping of the Mechanical Properties of Human Molar Tooth Enamel. Arch. Oral Biol. 2002, 47, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, M. Mechanical Properties of Biomedical Titanium Alloys. Mater. Sci. Eng. A 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Bauer, S.; Schmuki, P.; Von Der Mark, K.; Park, J. Progress in Materials Science Engineering Biocompatible Implant Surfaces Part I: Materials and Surfaces. Prog. Mater. Sci. 2013, 58, 261–326. [Google Scholar] [CrossRef]
- Tian, K.; Darvell, B.W. Determination of the Flexural Modulus of Elasticity of Orthodontic Archwires. Dent. Mater. 2010, 26, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Anusavice, K.J.; Phillips, R.W. Phillips’ Science of Dental Materials, 10th ed.; W.B. Saunders: Philadelphia, PA, USA, 1996; ISBN 9780721657417. [Google Scholar]
- Jasso-Ruiz, I.; Velazquez-Enriquez, U.; Scougall-Vilchis, R.J.; Morales-Luckie, R.A.; Sawada, T.; Yamaguchi, R. Silver Nanoparticles in Orthodontics, a New Alternative in Bacterial Inhibition: In Vitro Study. Prog. Orthod. 2020, 21, 24. [Google Scholar] [CrossRef]
- Arango-Santander, S.; Ramírez-Vega, C. Titanio: Aspectos Del Material Para Uso En Ortodoncia. Rev. Nac. Odontol. 2016, 12, 63–71. [Google Scholar] [CrossRef]
- Gioka, C.; Bourauel, C.; Zinelis, S.; Eliades, T.; Silikas, N.; Eliades, G. Titanium Orthodontic Brackets: Structure, Composition, Hardness and Ionic Release. Dent. Mater. 2004, 20, 693–700. [Google Scholar] [CrossRef]
- Uysal, I.; Yilmaz, B.; Atilla, A.O.; Evis, Z. Nickel Titanium Alloys as Orthodontic Archwires: A Narrative Review. Eng. Sci. Technol. Int. J. 2022, 36, 101277. [Google Scholar] [CrossRef]
- Wadood, A. Brief Overview on Nitinol as Biomaterial. Adv. Mater. Sci. Eng. 2016, 2016, 4173138. [Google Scholar] [CrossRef]
- Sifakakis, I.; Bourauel, C. Nickel–Titanium Products in Daily Orthodontic Practice. In Orthodontic Applications of Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 107–127. ISBN 9780081003831. [Google Scholar]
- Gravina, M.A.; Canavarro, C.; Elias, C.N.; Chaves, M.D.G.A.M.; Brunharo, I.H.V.P.; Quintão, C.C.A. Mechanical Properties of NiTi and CuNiTi Wires Used in Orthodontic Treatment. Part 2: Microscopic Surface Appraisal and Metallurgical Characteristics. Dent. Press J. Orthod. 2014, 19, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, F. The Load/Deflection Characteristics of Thermally Activated Orthodontic Archwires. Eur. J. Orthod. 2003, 25, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Sufarnap, E.; Harahap, K.; Cynthiana, S.; Reza, M. Nickel and Copper Ion Release, Deflection and the Surface Roughness of Copper-Nickel-Titanium Orthodontic Archwire in Sodium Fluoride Solution. J. Orthod. Sci. 2023, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Seyyed Aghamiri, S.M.; Ahmadabadi, M.N.; Raygan, S. Combined Effects of Different Heat Treatments and Cu Element on Transformation Behavior of NiTi Orthodontic Wires. J. Mech. Behav. Biomed. Mater. 2011, 4, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Sarul, M.; Kawala, B.; Kawala, M.; Antoszewska-Smith, J. Do the NiTi Low and Constant Force Levels Remain Stable in Vivo? Eur. J. Orthod. 2015, 37, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Farzin-Nia, F.; Yoneyama, T. Orthodontic Devices Using Ti-Ni Shape Memory Alloys. In Shape Memory Alloys for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2008; pp. 257–296. ISBN 9781845693442. [Google Scholar]
- Polychronis, G.; Al Jabbari, Y.S.; Eliades, T.; Zinelis, S. Galvanic Coupling of Steel and Gold Alloy Lingual Brackets with Orthodontic Wires: Is Corrosion a Concern? Angle Orthod. 2018, 88, 450–457. [Google Scholar] [CrossRef]
- Ito, A.; Kitaura, H.; Noguchi, T.; Ohori, F.; Mizoguchi, I. Analysis of Coating Loss from Coated Stainless Steel Orthodontic Wire. Appl. Sci. 2022, 12, 9497. [Google Scholar] [CrossRef]
- Toy, E.; Malkoc, S.; Corekci, B.; Bozkurt, B.S.; Hakki, S.S. Real-Time Cell Analysis of the Cytotoxicity of Orthodontic Brackets on Gingival Fibroblasts. J. Appl. Biomater. Funct. Mater. 2014, 12, 248–255. [Google Scholar] [CrossRef]
- Kim, I.-H.; Park, H.-S.; Kim, Y.K.; Kim, K.-H.; Kwon, T.-Y. Comparative Short-Term in Vitro Analysis of Mutans Streptococci Adhesion on Esthetic, Nickel-Titanium, and Stainless-Steel Arch Wires. Angle Orthod. 2014, 84, 680–686. [Google Scholar] [CrossRef]
- Krishnan, M.; Seema, S.; Kumar, A.V.; Varthini, N.P.; Sukumaran, K.; Pawar, V.R.; Arora, V. Corrosion Resistance of Surface Modified Nickel Titanium Archwires. Angle Orthod. 2014, 84, 358–367. [Google Scholar] [CrossRef]
- Hansen, D.C. Metal Corrosion in the Human Body: The Ultimate Bio-Corrosion Scenario. Electrochem. Soc. Interface 2008, 17, 31–34. [Google Scholar] [CrossRef]
- Maruthamuthu, S.; Rajasekar, A.; Sathiyanarayanan, S.; Muthukumar, N.; Palaniswamy, N. Electrochemical Behaviour of Microbes on Orthodontic Wires. Curr. Sci. 2005, 89, 988–996. [Google Scholar]
- Wolf, H.F.; Hassell, T.M. Biofilm—Plaque Formation on Tooth and Root Surfaces. In Color Atlas of Dental Hygene-Periodontology; Thieme: Stuttgart, Germany; New York, NY, USA, 2006; p. 24. ISBN 9783131417619. [Google Scholar]
- Zhou, Z.R.; Zheng, J. Tribology of Dental Materials: A Review. J. Phys. D Appl. Phys. 2008, 41, 113001. [Google Scholar] [CrossRef]
- Dawes, C.; Pedersen, A.M.L.; Villa, A.; Ekström, J.; Proctor, G.B.; Vissink, A.; Aframian, D.; McGowan, R.; Aliko, A.; Narayana, N.; et al. The Functions of Human Saliva: A Review Sponsored by the World Workshop on Oral Medicine VI. Arch. Oral Biol. 2015, 60, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Mosca, A.C.; Chen, J. Food-Saliva Interactions: Mechanisms and Implications. Trends Food Sci. Technol. 2017, 66, 125–134. [Google Scholar] [CrossRef]
- de Almeida, P.D.V.; Grégio, A.M.T.; Machado, M.A.N.; de Lima, A.A.S.; Azevedo, L.R. Saliva Composition and Functions: A Comprehensive Review. J. Contemp. Dent. Pract. 2008, 9, 72–80. [Google Scholar]
- Humphrey, S.P.; Williamson, R.T. A Review of Saliva: Normal Composition, Flow, and Function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef]
- Mystkowska, J.; Niemirowicz-Laskowska, K.; Łysik, D.; Tokajuk, G.; Dąbrowski, J.R.; Bucki, R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects. Int. J. Mol. Sci. 2018, 19, 743. [Google Scholar] [CrossRef]
- Yakubov, G.E.; Macakova, L.; Wilson, S.; Windust, J.H.C.; Stokes, J.R. Aqueous Lubrication by Fractionated Salivary Proteins: Synergistic Interaction of Mucin Polymer Brush with Low Molecular Weight Macromolecules. Tribol. Int. 2015, 89, 34–45. [Google Scholar] [CrossRef]
- Castagnola, M.; Cabras, T.; Vitali, A.; Sanna, M.T.; Messana, I. Biotechnological Implications of the Salivary Proteome. Trends Biotechnol. 2011, 29, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.E.; Lyons, K.M.; Kieser, J.A.; Waddell, N.J. Diurnal Variation of Intraoral PH and Temperature. BDJ Open 2017, 3, 17015. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.J.; Watts, J.T.F.; Hood, J.A.A.; Burritt, D.J. Intra-Oral Temperature Variation over 24 Hours. Eur. J. Orthod. 1999, 21, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.Y.; Kim, N.Y.; Kim, H.J.; Yang, S.Y.; Yoon, J.E.; Hyun, I.A.; Nam, S.H. Changes in the Oral Environment after Tooth Brushing and Oral Gargling. Biomed. Res. 2017, 28, 7093–7097. [Google Scholar]
- Neyraud, E.; Palicki, O.; Schwartz, C.; Nicklaus, S.; Feron, G. Variability of Human Saliva Composition: Possible Relationships with Fat Perception and Liking. Arch. Oral Biol. 2012, 57, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Poles, A.A.; Balcão, V.M.; Chaud, M.V.; Vila, M.M.D.C.; Aranha, N.; Yoshida, V.M.H.; Oliveira, J.M. Study of the Elemental Composition of Saliva of Smokers and Nonsmokers by X-Ray Fluorescence. Appl. Radiat. Isot. 2016, 118, 221–227. [Google Scholar] [CrossRef]
- Upadhyay, D.; Panchal, M.A.; Dubey, R.S.; Srivastava, V.K. Corrosion of Alloys Used in Dentistry: A Review. Mater. Sci. Eng. A 2006, 432, 1–11. [Google Scholar] [CrossRef]
- Hans, R.; Thomas, S.; Garla, B.; Dagli, R.J.; Hans, M.K. Effect of Various Sugary Beverages on Salivary PH, Flow Rate, and Oral Clearance Rate amongst Adults. Scientifica 2016, 2016, 5027283. [Google Scholar] [CrossRef]
- Dental Caries. Essentials of Oral Pathology and Oral Medicine; Cawson, R., Odell, E., Eds.; Churchill Livingstone: London, UK, 2008; pp. 40–59. ISBN 978-0443-10125-0. [Google Scholar]
- Walsh, L.J. Dental Plaque Fermentation and Its Role in Caries Risk Assessment. Int. Dent. S. Afr. 2006, 8, 34–40. [Google Scholar]
- Goel, I.; Navit, S.; Mayall, S.S.; Rallan, M.; Navit, P.; Chandra, S. Effects of Carbonated Drink & Fruit Juice on Salivary PH of Children: An in Vivo Study. Int. J. Sci. Study 2013, 1, 60. [Google Scholar]
- Lubis, H.F.; Simamora, G.H. Release of Nickel Ions and Changes in Surface Microstructure of Stainless Steel Archwire after Immersion in Tomato and Orange Juice. IOP Conf. Ser. Earth Environ. Sci. 2021, 912, 012018. [Google Scholar] [CrossRef]
- He, J.; Li, Y.; Cao, Y.; Xue, J.; Zhou, X. The Oral Microbiome Diversity and Its Relation to Human Diseases. Folia Microbiol. 2015, 60, 69–80. [Google Scholar] [CrossRef]
- Kilian, M.; Chapple, I.L.C.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M.L.; Tonetti, M.S.; Wade, W.G.; Zaura, E. The Oral Microbiome—An Update for Oral Healthcare Professionals. Br. Dent. J. 2016, 221, 657–666. [Google Scholar] [CrossRef]
- Marsh, P.D.; Head, D.A.; Devine, D.A. Dental Plaque as a Biofilm and a Microbial Community—Implications for Treatment. J. Oral Biosci. 2015, 57, 185–191. [Google Scholar] [CrossRef]
- Alasvand Zarasvand, K.; Rai, V.R. Microorganisms: Induction and Inhibition of Corrosion in Metals. Int. Biodeterior. Biodegrad. 2014, 87, 66–74. [Google Scholar] [CrossRef]
- Øgaard, B. White Spot Lesions During Orthodontic Treatment: Mechanisms and Fluoride Preventive Aspects. Semin. Orthod. 2008, 14, 183–193. [Google Scholar] [CrossRef]
- Weyant, R.J.; Tracy, S.L.; Anselmo, T.T.; Beltrán-Aguilar, E.D.; Donly, K.J.; Frese, W.A.; Hujoel, P.P.; Iafolla, T.; Kohn, W.; Kumar, J.; et al. Topical Fluoride for Caries Prevention. J. Am. Dent. Assoc. 2013, 144, 1279–1291. [Google Scholar] [CrossRef]
- ISO 8044:2015; Corrosion of Metals and Alloys—Basic Terms and Definitions. ISO (International Organization for Standardization): Geneva, Switzerland, 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:8044:ed-4:v1:en (accessed on 18 May 2018).
- Sato, N. Basics of Corrosion Chemistry. In Green Corrosion Chemistry and Engineering: Opportunities and Challenges; Wiley: Hoboken, NJ, USA, 2011; pp. 1–32. ISBN 9783527329304. [Google Scholar]
- House, K.; Sernetz, F.; Dymock, D.; Sandy, J.R.; Ireland, A.J. Corrosion of Orthodontic Appliances-Should We Care? Am. J. Orthod. Dentofac. Orthop. 2008, 133, 584–592. [Google Scholar] [CrossRef]
- Hunt, N.; Cunningham, S.; Golden, C.; Sheriff, M. An Investigation into the Effects of Polishing on Surface Hardness and Corrosion of Orthodontic Archwires. Angle Orthod. 1999, 69, 433–440. [Google Scholar] [CrossRef]
- Strehblow, H.-H. Phenomenological and Electrochemical Fundamentals of Corrosion. In Materials Science and Technology, Corrosion and Environmental Degradation, Vol. I.; Schütze, M., Cahn, R., Haasen, P., Kramer, E., Eds.; Wiley-VCH: Weinheim, Germany, 2000; pp. 1–66. ISBN 3-527-29505-4. [Google Scholar]
- Eliades, T.; Zinelis, S.; Bourauel, C.; Eliades, G. Manufacturing of Orthodontic Brackets: A Review of Metallurgical Perspectives and Applications. Recent Pat. Mater. Sci. 2008, 1, 135–139. [Google Scholar] [CrossRef]
- Hanawa, T. Metal Ion Release from Metal Implants. Mater. Sci. Eng. C 2004, 24, 745–752. [Google Scholar] [CrossRef]
- Marcus, P.; Maurice, V. Passivity of Metals and Alloys. In Materials Science and Technology, Corrosion and Environmental Degradation, Vol. I.; Schütze, M., Cahn, R., Haasen, P., Kramer, E., Eds.; Wiley-VCH: Weinheim, Germany, 2000; pp. 131–169. ISBN 3-527-29505-4. [Google Scholar]
- Hedberg, Y.S.; Odnevall Wallinder, I. Metal Release from Stainless Steel in Biological Environments: A Review. Biointerphases 2016, 11, 018901. [Google Scholar] [CrossRef]
- Prasad, S.; Ehrensberger, M.; Gibson, M.P.; Kim, H.; Monaco, E.A. Biomaterial Properties of Titanium in Dentistry. J. Oral Biosci. 2015, 57, 192–199. [Google Scholar] [CrossRef]
- Mazinanian, N.; Hedberg, Y.S. Metal Release Mechanisms for Passive Stainless Steel in Citric Acid at Weakly Acidic PH. J. Electrochem. Soc. 2016, 163, C686–C693. [Google Scholar] [CrossRef]
- Walker, M.P.; White, R.J.; Kula, K.S. Effect of Fluoride Prophylactic Agents on the Mechanical Properties of Nickel-Titanium-Based Orthodontic Wires. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 662–669. [Google Scholar] [CrossRef]
- Mystkowska, J. Biocorrosion of Dental Alloys Due to Desulfotomaculum Nigrificans Bacteria. Acta Bioeng. Biomech. 2016, 18, 87–96. [Google Scholar] [CrossRef]
- Daems, J.; Celis, J.-P.; Willems, G. Morphological Characterization of As-Received and in Vivo Orthodontic Stainless Steel Archwires. Eur. J. Orthod. 2009, 31, 260–265. [Google Scholar] [CrossRef]
- Porcayo-Calderon, J.; Casales-Diaz, M.; Salinas-Bravo, V.M.; Martinez-Gomez, L. Corrosion Performance of Fe-Cr-Ni Alloys in Artificial Saliva and Mouthwash Solution. Bioinorg. Chem. Appl. 2015, 2015, 930802. [Google Scholar] [CrossRef]
- Schiff, N. Galvanic Corrosion between Orthodontic Wires and Brackets in Fluoride Mouthwashes. Eur. J. Orthod. 2006, 28, 298–304. [Google Scholar] [CrossRef]
- Oh, K.T.; Choo, S.U.; Kim, K.M.; Kim, K.N. A Stainless Steel Bracket for Orthodontic Application. Eur. J. Orthod. 2005, 27, 237–244. [Google Scholar] [CrossRef]
- Mendes, B.D.A.B.; Ferreira, R.A.N.; Pithon, M.M.; Horta, M.C.R.; Oliveira, D.D. Physical and Chemical Properties of Orthodontic Brackets after 12 and 24 Months: In Situ Study. J. Appl. Oral Sci. 2014, 22, 194–203. [Google Scholar] [CrossRef]
- Jacoby, L.S.; Junior, V.D.S.R.; Campos, M.M.; de Menezes, L.M. Cytotoxic Outcomes of Orthodontic Bands with and without Silver Solder in Different Cell Lineages. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 957–963. [Google Scholar] [CrossRef]
- Tahmasbi, S.; Ghorbani, M.; Masudrad, M. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-Containing Mouthwash. J. Dent. Res. Dent. Clin. Dent. Prospects 2015, 9, 159–165. [Google Scholar] [CrossRef]
- Petković Didović, M.; Jelovica Badovinac, I.; Fiket, Ž.; Žigon, J.; Rinčić Mlinarić, M.; Čanadi Jurešić, G. Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations. Materials 2023, 16, 4156. [Google Scholar] [CrossRef]
- Schweitzer, P.A. Fundamentals of Metallic Corrosion, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9780429127137. [Google Scholar]
- Saporeti, M.P.; Mazzieiro, E.T.; Sales, W.F. In Vitro Corrosion of Metallic Orthodontic Brackets: Influence of Artificial Saliva with and without Fluorides. Dent. Press J. Orthod. 2012, 17, 24e1–24e7. [Google Scholar] [CrossRef]
- Fróis, A.; Mendes, A.R.; Pereira, S.A.; Louro, C.S. Metal Release and Surface Degradation of Fixed Orthodontic Appliances during the Dental Levelling and Aligning Phase: A 12-Week Study. Coatings 2022, 12, 554. [Google Scholar] [CrossRef]
- Zhang, Y. Corrosion Resistance of Passive Films on Orthodontic Bands in Fluoride-Containing Artificial Saliva. Int. J. Electrochem. Sci. 2017, 12, 292–304. [Google Scholar] [CrossRef]
- Kao, C.-T.; Huang, T.-H. Variations in Surface Characteristics and Corrosion Behaviour of Metal Brackets and Wires in Different Electrolyte Solutions. Eur. J. Orthod. 2010, 32, 555–560. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, M.R.; Chaturvedi, T.P.; Singh, M.M. Effect of Dietary Spices on the Pitting Behavior of Stainless Steel Orthodontic Bands. Mater. Lett. 2011, 65, 2241–2244. [Google Scholar] [CrossRef]
- Chaturvedi, T. Corrosion of Orthodontic Brackets in Different Spices:In Vitro Study. Indian J. Dent. Res. 2014, 25, 630. [Google Scholar] [CrossRef]
- Chiba, A.; Muto, I.; Sugawara, Y.; Hara, N. Pit Initiation Mechanism at MnS Inclusions in Stainless Steel: Synergistic Effect of Elemental Sulfur and Chloride Ions. J. Electrochem. Soc. 2013, 160, C511–C520. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, M.; Feng, J.; Li, J.; Liu, C. Induced-Pitting Behaviors of MnS Inclusions in Steel. High Temp. Mater. Process. 2018, 37, 1007–1016. [Google Scholar] [CrossRef]
- Alnajjar, M.; Christien, F.; Barnier, V.; Bosch, C.; Wolski, K.; Fortes, A.D.; Telling, M. Influence of Microstructure and Manganese Sulfides on Corrosion Resistance of Selective Laser Melted 17-4 PH Stainless Steel in Acidic Chloride Medium. Corros. Sci. 2020, 168, 108585. [Google Scholar] [CrossRef]
- Hodgson, A.W.E.; Kurz, S.; Virtanen, S.; Fervel, V.; Olsson, C.-O.A.; Mischler, S. Passive and Transpassive Behaviour of CoCrMo in Simulated Biological Solutions. Electrochim. Acta 2004, 49, 2167–2178. [Google Scholar] [CrossRef]
- Bagatin, C.R.; Ito, I.Y.; Andrucioli, M.C.D.; Nelson-Filho, P.; Ferreira, J.T.L. Corrosion in Haas Expanders with and without Use of an Antimicrobial Agent: An in Situ Study. J. Appl. Oral Sci. 2011, 19, 662–667. [Google Scholar] [CrossRef]
- Wang, J.; Li, N.; Rao, G.; Han, E.; Ke, W. Stress Corrosion Cracking of NiTi in Artificial Saliva. Dent. Mater. 2007, 23, 133–137. [Google Scholar] [CrossRef]
- Kameda, T.; Oda, H.; Ohkuma, K.; Sano, N.; Batbayar, N.; Terashima, Y.; Sato, S.; TeradaA, K. Microbiologically Influenced Corrosion of Orthodontic Metallic Appliances. Dent. Mater. J. 2014, 33, 187–195. [Google Scholar] [CrossRef]
- Muyzer, G.; Stams, A.J.M. The Ecology and Biotechnology of Sulphate-Reducing Bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454. [Google Scholar] [CrossRef]
- Jiang, J.; Chan, A.; Ali, S.; Saha, A.; Haushalter, K.J.; Lam, W.-L.M.; Glasheen, M.; Parker, J.; Brenner, M.; Mahon, S.B.; et al. Hydrogen Sulfide—Mechanisms of Toxicity and Development of an Antidote. Sci. Rep. 2016, 6, 20831. [Google Scholar] [CrossRef]
- Dhandapani, P.; MuraliKannan, M.; Anandkumar, B.; Maruthamuthu, S.; Manoharan, S.P. Electrochemistry of Calcium Precipitating Bacteria in Orthodontic Wire. Oral Sci. Int. 2014, 11, 22–29. [Google Scholar] [CrossRef]
- Petoumeno, E.; Kislyuk, M.; Hoederath, H.; Keilig, L.; Bourauel, C.; Jäger, A. Corrosion Susceptibility and Nickel Release of Nickel Titanium Wires during Clinical Application. J. Orofac. Orthop. 2008, 69, 411–423. [Google Scholar] [CrossRef]
- Harada, R.; Kokubu, E.; Kinoshita, H.; Yoshinari, M.; Ishihara, K.; Kawada, E.; Takemoto, S. Corrosion Behavior of Titanium in Response to Sulfides Produced by Porphyromonas Gingivalis. Dent. Mater. 2018, 34, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, A.; Mayanagi, G.; Nakajo, K.; Sasaki, K.; Takahashi, N. Microbiologically Induced Corrosive Properties of the Titanium Surface. J. Dent. Res. 2014, 93, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Khanam, A.; Ghafoor, H. Effects of Intraoral Aging of Arch-Wires on Frictional Forces: An Ex Vivo Study. J. Orthod. Sci. 2016, 5, 109. [Google Scholar] [CrossRef] [PubMed]
- Cury, S.; Aliaga-Del Castillo, A.; Pinzan, A.; Sakoda, K.; Bellini-Pereira, S.; Janson, G. Orthodontic Brackets Friction Changes after Clinical Use: A Systematic Review. J. Clin. Exp. Dent. 2019, 11, e482–e490. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Bourauel, C. Intraoral Aging of Orthodontic Materials: The Picture We Miss and Its Clinical Relevance. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 403–412. [Google Scholar] [CrossRef]
- Regis, S.; Soares, P.; Camargo, E.S.; Guariza Filho, O.; Tanaka, O.; Maruo, H. Biodegradation of Orthodontic Metallic Brackets and Associated Implications for Friction. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 501–509. [Google Scholar] [CrossRef]
- Bandeira, A.M.B.; dos Santos, M.P.A.; Pulitini, G.; Elias, C.N.; da Costa, M.F. Influence of Thermal or Chemical Degradation on the Frictional Force of an Experimental Coated NiTi Wire. Angle Orthod. 2011, 81, 484–489. [Google Scholar] [CrossRef]
- Lima, A.A.S.; de Grégio, A.M.T.; Tanaka, O.; Machado, M.Â.N.; França, B.H.S. Tratamento Das Ulcerações Traumáticas Bucais Causadas Por Aparelhos Ortodônticos. Rev. Dent. Press Ortod. Ortop. Facial 2005, 10, 30–36. [Google Scholar] [CrossRef]
- Pires, L.P.B.; de Oliveira, A.H.A.; da Silva, H.F.; de Oliveira, P.T.; dos Santos, P.B.D.; Pinheiro, F.H. de S.L. Can Shielded Brackets Reduce Mucosa Alteration and Increase Comfort Perception in Orthodontic Patients in the First 3 Days of Treatment? A Single-Blind Randomized Controlled Trial. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 956–966. [Google Scholar] [CrossRef]
- Kluemper, G.T.; Hiser, D.G.; Rayens, M.K.; Jay, M.J. Efficacy of a Wax Containing Benzocaine in the Relief of Oral Mucosal Pain Caused by Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Bourauel, C.; Scharold, W.; Jäger, A.; Eliades, T. Fatigue Failure of As-Received and Retrieved NiTi Orthodontic Archwires. Dent. Mater. 2008, 24, 1095–1101. [Google Scholar] [CrossRef]
- Petoumeno, E.; Arndt, M.; Keilig, L.; Reimann, S.; Hoederath, H.; Eliades, T.; Jäger, A.; Bourauel, C. Nickel Concentration in the Saliva of Patients with Nickel-Titanium Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cameán, A.; Jos, Á.; Mellado-García, P.; Iglesias-Linares, A.; Solano, E.; Cameán, A.M. In Vitro and in Vivo Evidence of the Cytotoxic and Genotoxic Effects of Metal Ions Released by Orthodontic Appliances: A Review. Environ. Toxicol. Pharmacol. 2015, 40, 86–113. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Sanderson, B.J.S.; Wang, H. Cyto- and Genotoxicity of Ultrafine TiO2 Particles in Cultured Human Lymphoblastoid Cells. Mutat. Res. Toxicol. Environ. Mutagen. 2007, 628, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Messer, R.L.W.; Bishop, S.; Lucas, L.C. Effects of Metallic Ion Toxicity on Human Gingival Fibroblasts Morphology. Biomaterials 1999, 20, 1647–1657. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthi, S.; Chitharanjan, A.; Padmanabhan, S. Allergy and Orthodontics. J. Orthod. Sci. 2012, 1, 83. [Google Scholar] [CrossRef] [PubMed]
- Primožič, J.; Poljšak, B.; Jamnik, P.; Kovač, V.; Čanadi Jurešić, G.; Spalj, S. Risk Assessment of Oxidative Stress Induced by Metal Ions Released from Fixed Orthodontic Appliances during Treatment and Indications for Supportive Antioxidant Therapy: A Narrative Review. Antioxidants 2021, 10, 1359. [Google Scholar] [CrossRef]
- Samitz, M.H.; Katz, S.A. Nickel Dermatitis Hazards from Prostheses: In Vivo and in Vitro Stabilization Studies. Br. J. Dermatol. 1975, 92, 287–290. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Chojnacka, K. Release of Metal Ions from Orthodontic Appliances by In Vitro Studies: A Systematic Literature Review. Biol. Trace Elem. Res. 2011, 139, 241–256. [Google Scholar] [CrossRef]
- Macedo de Menezes, L.; Cardoso Abdo Quintão, C. The Release of Ions from Metallic Orthodontic Appliances. Semin. Orthod. 2010, 16, 282–292. [Google Scholar] [CrossRef]
- Urbutytė, K.; Barčiūtė, A.; Lopatienė, K. The Changes in Nickel and Chromium Ion Levels in Saliva with Fixed Orthodontic Appliances: A Systematic Review. Appl. Sci. 2023, 13, 4739. [Google Scholar] [CrossRef]
- Gjerdet, N.R.; Erichsen, E.S.; Remlo, H.E.; Evjen, G. Nickel and Iron in Saliva of Patients with Fixed Orthodontic Appliances. Acta Odontol. Scand. 1991, 49, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Cempel, G.N.M. Nickel: A Review of Its Sources and Environmental Toxicolog. Pol. J. Environ. Stud. 2006, 15, 372–382. [Google Scholar]
- Smart, G.A.; Sherlock, J.C. Nickel in Foods and the Diet. Food Addit. Contam. 1987, 4, 61–71. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Nickel in Drinking Water. In Background Document for Development of WHO Guidelines for Drinking-Water Quality; (WHO/SDE/WSH/04.08/55); World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Becker, W.; Kumpulainen, J. Contents of Essential and Toxic Mineral Elements in Swedish Market-Basket Diets in 1987. Br. J. Nutr. 1991, 66, 151–160. [Google Scholar] [CrossRef] [PubMed]
- CCME (Canadian Council of Ministers of the Environment). Scientific Criteria Document for Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Nickel; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2015. [Google Scholar]
- PHE (Public Health England). Nickel. In Toxicological Overview; Version 1; Toxicology Department, CRCE, Public Health England: London, UK, 2009. [Google Scholar]
- WHO (World Health Organization). Nickel. In Air Quality Guidelines for Europe; Regional Office for Europe, Ed.; World Health Organization: Copenhagen, Denmark, 2000; ISBN 9789289013581. [Google Scholar]
- Haber, L.T.; Bates, H.K.; Allen, B.C.; Vincent, M.J.; Oller, A.R. Derivation of an Oral Toxicity Reference Value for Nickel. Regul. Toxicol. Pharmacol. 2017, 87, S1–S18. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Chromium. In Air Quality Guidelines for Europe; Regional Office for Europe, Ed.; World Health Organization: Copenhagen, Denmark, 2000; ISBN 9789289013581. [Google Scholar]
- Duda-Chodak, A.; Blaszczyk, U. The Impact of Nickel on Human Health. J. Elem. 2008, 13, 685–696. [Google Scholar]
- Forgacs, Z.; Massányi, P.; Lukac, N.; Somosy, Z. Reproductive Toxicology of Nickel—Review. J. Environ. Sci. Health Part A 2012, 47, 1249–1260. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Nickel and Nickel Compounds; Academic Press: New York, NY, USA, 2011; Volume 100C, pp. 169–218. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Valletta, Malta, 2011. [Google Scholar]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Silverberg, N.B.; Pelletier, J.L.; Jacob, S.E.; Schneider, L.C.; Cohen, B.; Horii, K.A.; Kristal, C.L.; Maguiness, S.M.; Tollefson, M.M.; Weinstein, M.G.; et al. Nickel Allergic Contact Dermatitis: Identification, Treatment, and Prevention. Pediatrics 2020, 145, e20200628. [Google Scholar] [CrossRef] [PubMed]
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, Its Adverse Health Effects & Oxidative Stress. Indian J. Med. Res. 2008, 128, 412–425. [Google Scholar] [PubMed]
- Sahoo, N.; Kailasam, V.; Padmanabhan, S.; Chitharanjan, A.B. In-Vivo Evaluation of Salivary Nickel and Chromium Levels in Conventional and Self-Ligating Brackets. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 340–345. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.M.; De Menezes, L.M. Nickel, Chromium and Iron Levels in the Saliva of Patients with Simulated Fixed Orthodontic Appliances. Angle Orthod. 2008, 78, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Aǧaoǧlu, G.; Arun, T.; Izgü, B.; Yarat, A. Nickel and Chromium Levels in the Saliva and Serum of Patients with Fixed Orthodontic Appliances. Angle Orthod. 2001, 71, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Masjedi, M.; Niknam, O.; Haghighat Jahromi, N.; Javidi, P.; Rakhshan, V. Effects of Fixed Orthodontic Treatment Using Conventional, Copper-Included, and Epoxy-Coated Nickel-Titanium Archwires on Salivary Nickel Levels: A Double-Blind Randomized Clinical Trial. Biol. Trace Elem. Res. 2016, 174, 27–31. [Google Scholar] [CrossRef]
- Yassaei, S.; Dadfarnia, S.; Ahadian, H.; Moradi, F. Nickel and Chromium Levels in the Saliva of Patients with Fixed Orthodontic Appliances. Orthodontics 2013, 14, e76–e81. [Google Scholar] [CrossRef]
- Haleem, R.; Ahmad Shafiai, N.; Mohd Noor, S. Perspective on Metal Leachables from Orthodontic Appliances: A Scoping Review. J. Int. Oral Health 2021, 13, 539–548. [Google Scholar]
- Dwivedi, A.; Tikku, T.; Khanna, R.; Maurya, R.P.; Verma, G.; Murthy, R.C. Release of Nickel and Chromium Ions in the Saliva of Patients with Fixed Orthodontic Appliance: An in-Vivo Study. Natl. J. Maxillofac. Surg. 2015, 6, 62–66. [Google Scholar] [CrossRef]
- Kocadereli, L.; Ataç, A.; Kale, S.; Özer, D. Salivary Nickel and Chromium in Patients with Fixed Orthodontic Appliances. Angle Orthod. 2000, 70, 431–434. [Google Scholar] [CrossRef]
- Fors, R.; Persson, M. Nickel in Dental Plaque and Saliva in Patients with and without Orthodontic Appliances. Eur. J. Orthod. 2006, 28, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Olms, C.; Yahiaoui-Doktor, M.; Remmerbach, T.W. Contact Allergies to Dental Materials. Swiss Dent. J. 2019, 129, 571–579. [Google Scholar] [PubMed]
- Hafez, H.S.; Selim, E.M.N.; Kamel Eid, F.H.; Tawfik, W.A.; Al-Ashkar, E.A.; Mostafa, Y.A. Cytotoxicity, Genotoxicity, and Metal Release in Patients with Fixed Orthodontic Appliances: A Longitudinal in-Vivo Study. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 298–308. [Google Scholar] [CrossRef]
- Singh, D.P.; Sehgal, V.; Pradhan, K.L.; Chandna, A.; Gupta, R. Estimation of Nickel and Chromium in Saliva of Patients with Fixed Orthodontic Appliances. World J. Orthod. 2008, 9, 196–202. [Google Scholar]
- Nayak, R.S.; Khanna, B.; Pasha, A.; Vinay, K.; Narayan, A.; Chaitra, K. Evaluation of Nickel and Chromium Ion Release During Fixed Orthodontic Treatment Using Inductively Coupled Plasma-Mass Spectrometer: An In Vivo Study. J. Int. Oral Health 2015, 7, 14–20. [Google Scholar]
- European Comission Regulation (EC). 1907/2006 of the European Parliament and of the Council of 18 December 2006—REACH. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1907&from=en (accessed on 5 June 2023).
- Mikulewicz, M.; Chojnacka, K. Human Exposure to Trace Elements from Dental Biomaterials. In Recent Advances in Trace Elements; Wiley: Hoboken, NJ, USA, 2018; pp. 469–479. ISBN 9781119133780. [Google Scholar]
- Büdinger, L.; Hertl, M. Immunologic Mechanisms in Hypersensitivity Reactions to Metal Ions: An Overview. Allergy Eur. J. Allergy Clin. Immunol. 2000, 55, 108–115. [Google Scholar] [CrossRef]
- Saito, M.; Arakaki, R.; Yamada, A.; Tsunematsu, T.; Kudo, Y.; Ishimaru, N. Molecular Mechanisms of Nickel Allergy. Int. J. Mol. Sci. 2016, 17, 202. [Google Scholar] [CrossRef]
- Peltonen, L. Nickel Sensitivity. Int. J. Dermatol. 2008, 20, 352–353. [Google Scholar] [CrossRef]
- Zambelli, B.; Uversky, V.N.; Ciurli, S. Nickel Impact on Human Health: An Intrinsic Disorder Perspective. Biochim. Biophys. Acta Proteins Proteom. 2016, 1864, 1714–1731. [Google Scholar] [CrossRef]
- Buczko, P.; Szarmach, I.; Grycz, M.; Kasacka, I. Caspase-3 as an Important Factor in the Early Cytotoxic Effect of Nickel on Oral Mucosa Cells in Patients Treated Orthodontically. Folia Histochem. Cytobiol. 2017, 55, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Luz, M.; Souza, A.; Haddad, A.; Tartomano, A.; Oliveira, P. In Vitro Cr(VI) Speciation in Synthetic Saliva after Releasing from Orthodontic Brackets Using Silica-Aptes Separation and GF AAS Determination. Quim. Nova 2016, 39, 951–955. [Google Scholar] [CrossRef]
- Setcos, J.C.; Babaei-Mahani, A.; Di Silvio, L.; Mjör, I.A.; Wilson, N.H.F. The Safety of Nickel Containing Dental Alloys. Dent. Mater. 2006, 22, 1163–1168. [Google Scholar] [CrossRef]
- Schuster, G.; Reichle, R.; Bauer, R.R.; Schopf, P.M. Allergies Induced by Orthodontic Alloys: Incidence and Impact on Treatment. J. Orofac. Orthop. 2004, 65, 48–59. [Google Scholar] [CrossRef]
- Flores-Bracho, M.G.; Takahashi, C.S.; Castillo, W.O.; Saraiva, M.C.P.; Küchler, E.C.; Matsumoto, M.A.N.; Ferreira, J.T.L.; Nelson-Filho, P.; Romano, F.L. Genotoxic Effects in Oral Mucosal Cells Caused by the Use of Orthodontic Fixed Appliances in Patients after Short and Long Periods of Treatment. Clin. Oral Investig. 2019, 23, 2913–2919. [Google Scholar] [CrossRef]
- Loyola-Rodríguez, J.P.; Lastra-Corso, I.; García-Cortés, J.O.; Loyola-Leyva, A.; Domínguez-Pérez, R.A.; Avila-Arizmendi, D.; Contreras-Palma, G.; González-Calixto, C. In Vitro Determination of Genotoxicity Induced by Brackets Alloys in Cultures of Human Gingival Fibroblasts. J. Toxicol. 2020, 2020, 1467456. [Google Scholar] [CrossRef] [PubMed]
- Bass, J.K.; Fine, H.; Cisneros, G.J. Nickel Hypersensitivity in the Orthodontic Patient. Am. J. Orthod. Dentofac. Orthop. 1993, 103, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Kerosuo, H.; Kullaa, A.; Kerosuo, E.; Kanerva, L.; Hensten-Pettersen, A. Nickel Allergy in Adolescents in Relation to Orthodontic Treatment and Piercing of Ears. Am. J. Orthod. Dentofac. Orthop. 1996, 109, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Staerkjaer, L.; Menne, T. Nickel Allergy and Orthodontic Treatment. Eur. J. Orthod. 1990, 12, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Ibáñez, R.; Lara-Carrillo, E.; Morales-Luckie, R.A.; Romero-Guzmán, E.T.; Toral-Rizo, V.H.; Ramírez-Cardona, M.; García-Hernández, V.; Medina-Solís, C.E. Evaluation of the Release of Nickel and Titanium under Orthodontic Treatment. Sci. Rep. 2020, 10, 22280. [Google Scholar] [CrossRef]
- Kochanowska, I.E.; Chojnacka, K.; Pawlak-Adamska, E.; Mikulewicz, M. Metallic Orthodontic Materials Induce Gene Expression and Protein Synthesis of Metallothioneins. Materials 2021, 14, 1922. [Google Scholar] [CrossRef] [PubMed]
- Muris, J.; Feilzer, A.J. Micro Analysis of Metals in Dental Restorations as Part of a Diagnostic Approach in Metal Allergies. Neuro Endocrinol. Lett. 2006, 27 (Suppl. 1), 49–52. [Google Scholar]
- Dunlap, C.L.; Vincent, S.K.; Barker, B.F. Allergic Reaction to Orthodontic Wire: Report of Case. J. Am. Dent. Assoc. 1989, 118, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Ellis, P.E.; Benson, P.E. Potential Hazards of Orthodontic Treatment—What Your Patient Should Know. Dent. Update 2002, 29, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Kolokitha, O.E.; Chatzistavrou, E. A Severe Reaction to Ni-Containing Orthodontic Appliances. Angle Orthod. 2009, 79, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.; Ahing, S.I.; Karaiskos, N.E.; Wiltshire, W.A. Nickel Allergy and Orthodontics, a Review and Report of Two Cases. Br. Dent. J. 2008, 204, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Ehrnrooth, M.; Kerosuo, H. Face and Neck Dermatitis from a Stainless Steel Orthodontic Appliance. Angle Orthod. 2009, 79, 1194–1196. [Google Scholar] [CrossRef]
- Navarro-Triviño, F.J.; Ruiz-Villaverde, R. Contact Urticaria/Angioedema Caused by Nickel from Metal Dental Braces. Contact Dermat. 2020, 83, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, S.; Verma, S.; Dhiman, S. Metal Hypersensitivity in Orthodontic Patients. J. Dent. Mater. Tech. 2015, 4, 111–114. [Google Scholar]
- Rahilly, G.; Price, N. Nickel Allergy and Orthodontics. J. Orthod. 2003, 30, 171–174. [Google Scholar] [CrossRef]
- Kolokitha, O.E.G.; Chatzistavrou, E. Allergic Reactions to Nickel-Containing Orthodontic Appliances: Clinical Signs and Treatment Alternatives. World J. Orthod. 2008, 9, 399–406. [Google Scholar]
- Gursoy, U.K.; Sokucu, O.; Uitto, V.J.; Aydin, A.; Demirer, S.; Toker, H.; Erdem, O.; Sayal, A. The Role of Nickel Accumulation and Epithelial Cell Proliferation in Orthodontic Treatment-Induced Gingival Overgrowth. Eur. J. Orthod. 2007, 29, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Gurgel Maia, L.H.E.; de Lima Filho, H.L.; Araújo, M.V.A.; de Oliveira Ruellas, A.C.; de Souza Araújo, M.T. Incorporation of Metal and Color Alteration of Enamel in the Presence of Orthodontic Appliances. Angle Orthod. 2012, 82, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Pazzini, C.A.; Pereira, L.J.; Marques, L.S.; Ramos-Jorge, J.; Aparecida da Silva, T.; Paiva, S.M. Nickel-Free vs Conventional Braces for Patients Allergic to Nickel: Gingival and Blood Parameters during and after Treatment. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cameán, A.; Jos, A.; Cameán, A.M.; Solano, E.; Iglesias-Linares, A. Genotoxic and Cytotoxic Effects and Gene Expression Changes Induced by Fixed Orthodontic Appliances in Oral Mucosa Cells of Patients: A Systematic Review. Toxicol. Mech. Methods 2015, 25, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Downarowicz, P.; Mikulewicz, M. Trace Metal Ions Release from Fixed Orthodontic Appliances and DNA Damage in Oral Mucosa Cells by in Vivo Studies: A Literature Review. Adv. Clin. Exp. Med. 2017, 26, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Burrow, S.J. Friction and Resistance to Sliding in Orthodontics: A Critical Review. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Kusy, R.P.; Whitley, J.Q. Friction between Different Wire-Bracket Configurations and Materials. Semin. Orthod. 1997, 3, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Kusy, R.P.; Whitley, J.Q. Influence of Archwire and Bracket Dimensions on Sliding Mechanics: Derivations and Determinations of the Critical Contact Angles for Binding. Eur. J. Orthod. 1999, 21, 199–208. [Google Scholar] [CrossRef]
- Articolo, L. Influence of Ceramic and Stainless Steel Brackets on the Notching of Archwires during Clinical Treatment. Eur. J. Orthod. 2000, 22, 409–425. [Google Scholar] [CrossRef]
- Prashant, P.; Nandan, H.; Gopalakrishnan, M. Friction in Orthodontics. J. Pharm. Bioallied Sci. 2015, 7, 334. [Google Scholar] [CrossRef]
- Bishara, S.E.; Barrett, R.D.; Selim, M.I. Biodegradation of Orthodontic Appliances. Part II. Changes in the Blood Level of Nickel. Am. J. Orthod. Dentofac. Orthop. 1993, 103, 115–119. [Google Scholar] [CrossRef]
- Kerosuo, H.; Moe, G.; Hensten-Pettersen, A. Salivary Nickel and Chromium in Subjects with Different Types of Fixed Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Trapalis, C.; Eliades, G.; Katsavrias, E. Salivary Metal Levels of Orthodontic Patients: A Novel Methodological and Analytical Approach. Eur. J. Orthod. 2003, 25, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Faccioni, F.; Franceschetti, P.; Cerpelloni, M.; Fracasso, M.E. In Vivo Study on Metal Release from Fixed Orthodontic Appliances and DNA Damage in Oral Mucosa Cells. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Levrini, L.; Lusvardi, G.; Gentile, D. Nickel Ions Release in Patients with Fixed Orthodontic Appliances. Minerva Stomatol. 2006, 55, 115–121. [Google Scholar]
- Menezes, L.M.; Quintão, C.A.; Bolognese, A.M. Urinary Excretion Levels of Nickel in Orthodontic Patients. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 635–638. [Google Scholar] [CrossRef]
- Amini, F.; Borzabadi Farahani, A.; Jafari, A.; Rabbani, M. In Vivo Study of Metal Content of Oral Mucosa Cells in Patients with and without Fixed Orthodontic Appliances. Orthod. Craniofacial Res. 2008, 11, 51–56. [Google Scholar] [CrossRef]
- Fernández-Miñano, E.; Ortiz, C.; Vicente, A.; Calvo, J.L.; Ortiz, A.J. Metallic Ion Content and Damage to the DNA in Oral Mucosa Cells of Children with Fixed Orthodontic Appliances. BioMetals 2011, 24, 935–941, Correction in BioMetals 2018, 31, 679–679. [Google Scholar] [CrossRef]
- Natarajan, M.; Padmanabhan, S.; Chitharanjan, A.; Narasimhan, M. Evaluation of the Genotoxic Effects of Fixed Appliances on Oral Mucosal Cells and the Relationship to Nickel and Chromium Concentrations: An in-Vivo Study. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 383–388. [Google Scholar] [CrossRef]
- Freitas, M.P.M.; Oshima, H.M.S.; Menezes, L.M. Release of Toxic Ions from Silver Solder Used in Orthodontics: An in-Situ Evaluation. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 177–181. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Chojnacka, K.; Zielińska, A.; Michalak, I. Exposure to Metals from Orthodontic Appliances by Hair Mineral Analysis. Environ. Toxicol. Pharmacol. 2011, 32, 10–16. [Google Scholar] [CrossRef]
- Amini, F.; Jafari, A.; Amini, P.; Sepasi, S. Metal Ion Release from Fixed Orthodontic Appliances—An in Vivo Study. Eur. J. Orthod. 2012, 34, 126–130. [Google Scholar] [CrossRef]
- Ousehal, L.; Lazrak, L. Change in Nickel Levels in the Saliva of Patients with Fixed Orthodontic Appliances. Int. Orthod. 2012, 10, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Amini, F.; Rakhshan, V.; Mesgarzadeh, N. Effects of Long-Term Fixed Orthodontic Treatment on Salivary Nickel and Chromium Levels: A 1-Year Prospective Cohort Study. Biol. Trace Elem. Res. 2012, 150, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Talic, N.F.; Alnahwi, H.H.; Al-Faraj, A.S. Nickel and Chromium Levels in the Saliva of a Saudi Sample Treated with Fixed Orthodontic Appliances. Saudi Dent. J. 2013, 25, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, M.; Jahanbin, A.; Yaghoubi, M.; Esmaily, H.; Zare, H. Are More Nickel Ions Accumulated in the Hair of Fixed Orthodontic Patients? Indian J. Dent. Res. 2013, 24, 298. [Google Scholar] [CrossRef] [PubMed]
- Amini, F.; Rahimi, H.; Morad, G.; Mollaei, M. The Effect of Stress on Salivary Metal Ion Content in Orthodontic Patients. Biol. Trace Elem. Res. 2013, 155, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cameán, A.; Jos, A.; Calleja, A.; Gil, F.; Iglesias, A.; Solano, E.; Cameán, A.M. Validation of a Method to Quantify Titanium, Vanadium and Zirconium in Oral Mucosa Cells by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Talanta 2014, 118, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cameán, A.; Jos, A.; Calleja, A.; Gil, F.; Iglesias-Linares, A.; Solano, E.; Cameán, A.M. Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for the Determination of Cobalt, Chromium, Copper and Nickel in Oral Mucosa Cells. Microchem. J. 2014, 114, 73–79. [Google Scholar] [CrossRef]
- Martín-Cameán, A.; Molina-Villalba, I.; Jos, A.; Iglesias-Linares, A.; Solano, E.; Cameán, A.M.; Gil, F. Biomonitorization of Chromium, Copper, Iron, Manganese and Nickel in Scalp Hair from Orthodontic Patients by Atomic Absorption Spectrometry. Environ. Toxicol. Pharmacol. 2014, 37, 759–771. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Wołowiec, P.; Janeczek, M.; Gedrange, T.; Chojnacka, K. The Release of Metal Ions from Orthodontic Appliances Animal Tests. Angle Orthod. 2014, 84, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Mikulewicz, M.; Wołowiec, P.; Loster, B.; Chojnacka, K. Metal Ions Released from Fixed Orthodontic Appliance Affect Hair Mineral Content. Biol. Trace Elem. Res. 2015, 163, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Amini, F.; Harandi, S.; Mollaei, M.; Rakhshan, V. Effects of Fixed Orthodontic Treatment Using Conventional versus Metal-Injection Molding Brackets on Salivary Nickel and Chromium Levels: A Double-Blind Randomized Clinical Trial. Eur. J. Orthod. 2015, 37, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Amini, F.; Mollaei, M.; Harandi, S.; Rakhshan, V. Effects of Fixed Orthodontic Treatment on Hair Nickel and Chromium Levels: A 6-Month Prospective Preliminary Study. Biol. Trace Elem. Res. 2015, 164, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Saghiri, M.A.; Orangi, J.; Asatourian, A.; Mehriar, P.; Sheibani, N. Effect of Mobile Phone Use on Metal Ion Release from Fixed Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Gómez Arcila, V.; Fang Mercado, L.; Herrera Herrera, A.; Díaz Caballero, A. Bioacumulación de Níquel En Encía, Saliva y Hueso Alveolar de Paciente Con Aparatología Ortodóncica Fija: Reporte de Un Caso. Rev. Clín. Periodoncia Implantol. Rehabil. Oral 2015, 8, 163–166. [Google Scholar] [CrossRef]
- Gölz, L.; Knickenberg, A.C.; Keilig, L.; Reimann, S.; Papageorgiou, S.N.; Jäger, A.; Bourauel, C. Nickel Ion Concentrations in the Saliva of Patients Treated with Self-Ligating Fixed Appliances: A Prospective Cohort Study. J. Orofac. Orthop. Fortschritte Kieferorthopädie 2016, 77, 85–93. [Google Scholar] [CrossRef]
- Amini, F.; Shariati, M.; Sobouti, F.; Rakhshan, V. Effects of Fixed Orthodontic Treatment on Nickel and Chromium Levels in Gingival Crevicular Fluid as a Novel Systemic Biomarker of Trace Elements: A Longitudinal Study. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 666–672. [Google Scholar] [CrossRef]
- Kumar, R.V.; Rajvikram, N.; Rajakumar, P.; Saravanan, R.; Deepak, V.A. An Accurate Methodology to Detect Leaching of Nickel and Chromium Ions in the Initial Phase of Orthodontic Treatment: An in Vivo Study. J. Contemp. Dent. Pract. 2016, 17, 205–210. [Google Scholar] [CrossRef]
- Wołowiec, P.; Chojnacka, K.; Loster, B.W.; Mikulewicz, M. Do Dietary Habits Influence Trace Elements Release from Fixed Orthodontic Appliances? Biol. Trace Elem. Res. 2017, 180, 214–222. [Google Scholar] [CrossRef]
- Causado-Vitola, V.; Rumbo-Zubiría, M.; Fang, L.; Diaz-Caballero, A. Nickel Variation in Biofilm, Saliva and Buccal Mucosa During Orthodontic Treatment. Asian J. Appl. Sci. 2017, 10, 45–49. [Google Scholar] [CrossRef]
- Khaneh Masjedi, M.; Haghighat Jahromi, N.; Niknam, O.; Hormozi, E.; Rakhshan, V. Effects of Fixed Orthodontic Treatment Using Conventional (Two-Piece) versus Metal Injection Moulding Brackets on Hair Nickel and Chromium Levels: A Double-Blind Randomized Clinical Trial. Eur. J. Orthod. 2017, 39, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Buczko, P.; Knaś, M.; Grycz, M.; Szarmach, I.; Zalewska, A. Orthodontic Treatment Modifies the Oxidant–Antioxidant Balance in Saliva of Clinically Healthy Subjects. Adv. Med. Sci. 2017, 62, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Lages, R.B.; Bridi, E.C.; Pérez, C.A.; Basting, R.T. Salivary Levels of Nickel, Chromium, Iron, and Copper in Patients Treated with Metal or Esthetic Fixed Orthodontic Appliances: A Retrospective Cohort Study. J. Trace Elem. Med. Biol. 2017, 40, 67–71, Corrigendum in J. Trace Elem. Med. Biol. 2018, 45, 189–190. [Google Scholar] [CrossRef] [PubMed]
- Nanjannawar, L.G.; Girme, T.S.; Agrawal, J.M.; Agrawal, M.S.; Fulari, S.G.; Shett, S.S.; Kagi, V.A. Effect of Mobile Phone Usage OnNickel Ions Release and PH of Saliva InPatients Undergoing Fixed OrthodonticTreatment. J. Clin. Diagn. Res. 2017, 11, ZC84–ZC87. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, V.; Pustake, S.J.; Joshi, V.; Tiwari, A.; Bhasin, M.; Punia, R.S. Assessment of Changes in Nickel and Chromium Levels in the Gingival Crevicular Fluid during Fixed Orthodontic Treatment. J. Contemp. Dent. Pract. 2017, 18, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, S.; Rahmati Kamel, M.; Mirzaie, M.; Sarrafan, A.; Khafri, S.; Parsian, H. Evaluation of Scalp Hair Nickel and Chromium Level Changes in Patients with Fixed Orthodontic Appliance: A One-Year Follow-up Study. Acta Odontol. Scand. 2018, 76, 1–5. [Google Scholar] [CrossRef]
- Jurela, A.; Verzak, Ž.; Brailo, V.; Škrinjar, I.; Sudarević, K.; Janković, B. Salivary Electrolytes in Patients with Metallic and Ceramic Orthodontic Brackets. Acta Stomatol. Croat. 2018, 52, 32–36. [Google Scholar] [CrossRef]
- Amini, F.; Asadi, E.; Hakimpour, D.; Rakhshan, A. Salivary Nickel and Chromium Levels in Orthodontic Patients with and Without Periodontitis: A Preliminary Historical Cohort Study. Biol. Trace Elem. Res. 2019, 191, 10–15. [Google Scholar] [CrossRef]
- Chitra, P.; Prashantha, G.S.; Rao, A. Long-Term Evaluation of Metal Ion Release in Orthodontic Patients Using Fluoridated Oral Hygiene Agents: An in Vivo Study. J. World Fed. Orthod. 2019, 8, 107–111. [Google Scholar] [CrossRef]
- Quadras, D.D.; Nayak, U.K.; Kumari, N.S.; Priyadarshini, H.R.; Gowda, S.; Fernandes, B. In Vivo Study on the Release of Nickel, Chromium, and Zinc in Saliva and Serum from Patients Treated with Fixed Orthodontic Appliances. Dent. Res. J. 2019, 16, 209. [Google Scholar] [CrossRef]
- Moghadam, M.G.; Hoshyar, R.; Mikulewicz, M.; Chojnacka, K.; Bjørklund, G.; Pen, J.J.; Azadi, N.A.; Pirsaheb, M.; Dashtaki, M.; Mansouri, B. Biomonitorization of Metal Ions in the Serum of Iranian Patients Treated with Fixed Orthodontic Appliances in Comparison with Controls in Eastern Iran. Environ. Sci. Pollut. Res. 2019, 26, 33373–33386. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.; Mengal, N.; Ahmed, M. A Comparison of Nickel Release in Saliva between Orthodontic and Non-Orthodontic Patients. Pak. Armed Forces Med. J. 2020, 70, 328–332. [Google Scholar]
- de Souza Schacher, H.R.; de Menezes, L.M. Metal Ion Quantification in the Saliva of Patients with Lingual Arch Appliances Using Silver Solder, Laser, or TIG Welding. Clin. Oral Investig. 2020, 24, 2109–2120. [Google Scholar] [CrossRef] [PubMed]
- Pritam, A.; Priyadarshini, A.; Hussain, K.; Kumar, A.; Kumar, N.; Malakar, A. Assessment of Nickel and Chromium Level in Gingival Crevicular Fluid in Patients Undergoing Orthodontic Treatment with or without Fluoridated Tooth Paste. J. Pharm. Bioallied Sci. 2021, 13, 1588. [Google Scholar] [CrossRef] [PubMed]
- Campos Zeffa, A.; Dias, B.G.; Silva, D.C.M.S.; Rotta, L.O.; Jussiani, E.I.; Andrello, A.C.; de Paula Ramos, S. Influence of Conventional or Invisalign Orthodontic Treatment on Mineral and Trace Element Salivary Levels: Longitudinal Study with Total Reflection X-Ray Fluorescence. Biol. Trace Elem. Res. 2021, 199, 2565–2572. [Google Scholar] [CrossRef] [PubMed]
- Hamadamin, S.I. In Vivo Kinetic Release of Five Metal Ions (Iron, Titanium, Nickel, Copper, and Chromium) from Fixed Orthodontic Alloys in Erbil City-Kurdistan Region/Iraq. Environ. Sci. Pollut. Res. 2022, 29, 11730–11735. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Venkatachalapathy, S.; Thiyagarajan, B.; Jeevagan, S.; Chinnasamy, A.; Sivanandham, M. Effect of Mobile Phone with and without Earphones Usage on Nickel Ion Release from Fixed Orthodontic Appliance. J. Contemp. Dent. Pract. 2023, 24, 303–307. [Google Scholar] [CrossRef]
- Vaughan, J.L.; Duncanson, M.G.; Nanda, R.S.; Currier, G.F. Relative Kinetic Frictional Forces between Sintered Stainless Steel Brackets and Orthodontic Wires. Am. J. Orthod. Dentofac. Orthop. 1995, 107, 20–27. [Google Scholar] [CrossRef]
- Dridi, A.; Bensalah, W.; Mezlini, S.; Tobji, S.; Zidi, M. Influence of Bio-Lubricants on the Orthodontic Friction. J. Mech. Behav. Biomed. Mater. 2016, 60, 1–7. [Google Scholar] [CrossRef]
- Fidalgo, T.K.D.S.; Pithon, M.M.; Maciel, J.V.B.; Bolognese, A.M. Friction between Different Wire Bracket Combinations in Artificial Saliva—An in Vitro Evaluation. J. Appl. Oral Sci. 2011, 19, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Ranc, H.; Elkhyat, A.; Servais, C.; Mac-Mary, S.; Launay, B.; Humbert, P. Friction Coefficient and Wettability of Oral Mucosal Tissue: Changes Induced by a Salivary Layer. Colloids Surf. A Physicochem. Eng. Asp. 2006, 276, 155–161. [Google Scholar] [CrossRef]
- Lu, C.; Zheng, Y.; Zhong, Q. Corrosion of Dental Alloys in Artificial Saliva with Streptococcus Mutans. PLoS ONE 2017, 12, e0174440. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, E.; Geraci, J.; Sachse, S.; Rödel, J.; Pfister, W.; Löffler, B.; Wagner, Y.; Eigenthaler, M.; Wolf, M. Qualitative and Quantitative Changes in the Oral Bacterial Flora Occur Shortly after Implementation of Fixed Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Chieng, J.; Wong, C.; Benic, G.; Farella, M. Factors Affecting Dental Biofilm in Patients Wearing Fixed Orthodontic Appliances. Prog. Orthod. 2017, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.; Yaraghi, N. The Effect of Fluoride Varnish and Chlorhexidine Gel on White Spots and Gingival and Plaque Indices in Fixed Orthodontic Patients: A Placebo-Controlled Study. Dent. Res. J. 2018, 15, 276–282. [Google Scholar]
- Chitra, P.; Prashantha, G.S.; Rao, A. Effect of Fluoride Agents on Surface Characteristics of NiTi Wires. An Ex Vivo Investigation. J. Oral Biol. Craniofacial Res. 2020, 10, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Schiff, N.; Grosgogeat, B.; Lissac, M.; Dalard, F. Influence of Fluoridated Mouthwashes on Corrosion Resistance of Orthodontics Wires. Biomaterials 2004, 25, 4535–4542. [Google Scholar] [CrossRef]
- Nahidh, M.; MH Garma, N.; Jasim, E.S. Assessment of Ions Released from Three Types of Orthodontic Brackets Immersed in Different Mouthwashes: An in Vitro Study. J. Contemp. Dent. Pract. 2018, 19, 73–80. [Google Scholar] [CrossRef]
- Rincic Mlinaric, M.; Karlovic, S.; Ciganj, Z.; Acev, D.P.; Pavlic, A.; Spalj, S. Oral Antiseptics and Nickel–Titanium Alloys: Mechanical and Chemical Effects of Interaction. Odontology 2019, 107, 150–157. [Google Scholar] [CrossRef]
- Condò, R.; Carli, E.; Cioffi, A.; Cataldi, M.E.; Quinzi, V.; Casaglia, A.; Giancotti, A.; Pirelli, P.; Lucarini, I.; Maita, F.; et al. Fluorinated Agents Effects on Orthodontic Alloys: A Descriptive In Vitro Study. Materials 2022, 15, 4612. [Google Scholar] [CrossRef] [PubMed]
- Pastor, F.; Rodríguez, J.C.; Barrera, J.M.; Delgado García-Menocal, J.A.; Brizuela, A.; Puigdollers, A.; Espinar, E.; Gil, J. Effect of Fluoride Content of Mouthwashes on Superelastic Properties of NiTi Orthodontic Archwires. Materials 2022, 15, 6592. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, N.; Bhuyan, L.; Dhull, K.S.; Dash, K.C.; MD, I.; Mishra, P. In Vitro Effect Of Fluoride Prophylactic Agents On Titanium Molybdenum Alloy And Stainless Steel Orthodontic Wires—Scanning Electron Microscope Study. Bangladesh J. Med. Sci. 2023, 22, 47–51. [Google Scholar] [CrossRef]
- Mirhashemi, A.; Jahangiri, S.; Kharrazifard, M. Release of Nickel and Chromium Ions from Orthodontic Wires Following the Use of Teeth Whitening Mouthwashes. Prog. Orthod. 2018, 19, 4. [Google Scholar] [CrossRef]
- Yanisarapan, T.; Thunyakitpisal, P.; Chantarawaratit, P. Corrosion of Metal Orthodontic Brackets and Archwires Caused by Fluoride-Containing Products: Cytotoxicity, Metal Ion Release and Surface Roughness. Orthod. Waves 2018, 77, 79–89. [Google Scholar] [CrossRef]
- Abbassy, M. Fluoride Influences Nickel-Titanium Orthodontic Wires′ Surface Texture and Friction Resistance. J. Orthod. Sci. 2016, 5, 121. [Google Scholar] [CrossRef]
- Rajendran, A.; Sundareswaran, S.; Peediyekkal, L.; Santhakumar, P.; Sathyanadhan, S. Effect of Oral Environment and Prescribed Fluoride Mouthwashes on Different Types of TMA Wires—An in-Vivo Study. J. Orthod. Sci. 2019, 8, 8. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Han, E.; Ke, W. Influence of Fluoride and Chloride on Corrosion Behavior of NiTi Orthodontic Wires. Acta Biomater. 2007, 3, 807–815. [Google Scholar] [CrossRef]
- Brandão, G.A.M.; Simas, R.M.; de Almeida, L.M.; da Silva, J.M.; Meneghim, M.d.C.; Pereira, A.C.; de Almeida, H.A.; Brandão, A.M.M. Evaluation of Ionic Degradation and Slot Corrosion of Metallic Brackets by the Action of Different Dentifrices. Dent. Press J. Orthod. 2013, 18, 86–93. [Google Scholar] [CrossRef]
- Chantarawaratit, P.; Yanisarapan, T. Exposure to the Oral Environment Enhances the Corrosion of Metal Orthodontic Appliances Caused by Fluoride-Containing Products: Cytotoxicity, Metal Ion Release, and Surface Roughness. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 101–112. [Google Scholar] [CrossRef]
- Russell, J.S. Current Products and Practice: Aesthetic Orthodontic Brackets. J. Orthod. 2005, 32, 146–163. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Makou, M.; Papadopoulos, T.; Eliades, G. Laboratory Evaluation of Modern Plastic Brackets. Eur. J. Orthod. 2012, 34, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Cacciafesta, V.; Sfondrini, M.F.; Scribante, A.; Klersy, C.; Auricchio, F. Evaluation of Friction of Conventional and Metal-Insert Ceramic Brackets in Various Bracket-Archwire Combinations. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Arici, N.; Akdeniz, B.S.; Arici, S. Comparison of the Frictional Characteristics of Aesthetic Orthodontic Brackets Measured Using a Modified in Vitro Technique. Korean J. Orthod. 2015, 45, 29. [Google Scholar] [CrossRef] [PubMed]
- Varela, J.C.; Velo, M.; Espinar, E.; Llamas, J.M.; Rúperez, E.; Manero, J.M.; Javier Gil, F. Mechanical Properties of a New Thermoplastic Polymer Orthodontic Archwire. Mater. Sci. Eng. C 2014, 42, 1–6. [Google Scholar] [CrossRef]
- Burstone, C.J.; Liebler, S.A.H.; Goldberg, A.J. Polyphenylene Polymers as Esthetic Orthodontic Archwires. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e391–e398. [Google Scholar] [CrossRef]
- Tada, Y.; Hayakawa, T.; Nakamura, Y. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires. Materials 2017, 10, 914. [Google Scholar] [CrossRef]
- Spendlove, J.; Berzins, D.W.; Pruszynski, J.E.; Ballard, R.W. Investigation of Force Decay in Aesthetic, Fibre-Reinforced Composite Orthodontic Archwires. Eur. J. Orthod. 2015, 37, 43–48. [Google Scholar] [CrossRef]
- Chng, C.K.; Foong, K.; Gandedkar, N.H.; Chan, Y.H.; Chew, C.-L. A New Esthetic Fiber-Reinforced Polymer Composite Resin Archwire: A Comparative Atomic Force Microscope (AFM) and Field-Emission Scanning Electron Microscope (FESEM) Study. Prog. Orthod. 2014, 15, 39. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Gronostajski, Z.; Wielgus, A.; Chojnacka, K. Transparent Orthodontic Archwires: A Systematic Literature Review. Arch. Civ. Mech. Eng. 2017, 17, 651–657. [Google Scholar] [CrossRef]
- Zinelis, S.; Brantley, W. Structure/Property Relationships in Orthodontic Ceramics. In Orthodontic Applications of Biomaterials; Eliades, T., Brantley, W.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 61–71. [Google Scholar]
- Krauss, J.; Faltermeier, A.; Behr, M.; Proff, P. Evaluation of Alternative Polymer Bracket Materials. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Faltermeier, A.; Behr, M.; Mussig, D. In Vitro Colour Stability of Aesthetic Brackets. Eur. J. Orthod. 2007, 29, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Faltermeier, A.; Reicheneder, C.; Römer, P.; Castro-Laza, A.; Proff, P. Effect of Ionizing Radiation on Polymer Brackets. J. Orofac. Orthop. 2014, 75, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Retamoso, L.B.; Luz, T.B.; Marinowic, D.R.; Machado, D.C.; De Menezes, L.M.; Freitas, M.P.M.; Oshima, H.M.S. Cytotoxicity of Esthetic, Metallic, and Nickel-Free Orthodontic Brackets: Cellular Behavior and Viability. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Guignone, B.C.; Silva, L.K.; Soares, R.V.; Akaki, E.; Goiato, M.C.; Pithon, M.M.; Oliveira, D.D. Color Stability of Ceramic Brackets Immersed in Potentially Staining Solutions. Dent. Press J. Orthod. 2015, 20, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.; Walker, M.P.; Kula, K. Fracture Strength of Ceramic Bracket Tie Wings Subjected to Tension. Angle Orthod. 2005, 75, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, D.J.; Walker, M.P.; Kula, K.; Williams, K.B.; Eick, J.D. Fluoride Prophylactic Agents Effect on Ceramic Bracket Tie-Wing Fracture Strength. Angle Orthod. 2008, 78, 524–530. [Google Scholar] [CrossRef]
- Guerrero, A.P.; Guariza Filho, O.; Tanaka, O.; Camargo, E.S.; Vieira, S. Evaluation of Frictional Forces between Ceramic Brackets and Archwires of Different Alloys Compared with Metal Brackets. Braz. Oral Res. 2010, 24, 40–45. [Google Scholar] [CrossRef]
- Sahoo, N. Comparison of the Perception of Pain during Fixed Orthodontic Treatment with Metal and Ceramic Brackets. J. Pharm. Bioallied Sci. 2019, 11, 30. [Google Scholar] [CrossRef]
- Matias, M.; Freitas, M.R.D.; Freitas, K.M.S.D.; Janson, G.; Higa, R.H.; Francisconi, M.F. Comparison of Deflection Forces of Esthetic Archwires Combined with Ceramic Brackets. J. Appl. Oral Sci. 2018, 26, e20170220. [Google Scholar] [CrossRef]
- da Silva, D.L.; Mattos, C.T.; de Araújo, M.V.A.; de Oliveira Ruellas, A.C. Color Stability and Fluorescence of Different Orthodontic Esthetic Archwires. Angle Orthod. 2013, 83, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.J.; Fernández, E.; Vicente, A.; Calvo, J.L.; Ortiz, C. Metallic Ions Released from Stainless Steel, Nickel-Free, and Titanium Orthodontic Alloys: Toxicity and DNA Damage. Am. J. Orthod. Dentofac. Orthop. 2011, 140, e115–e122. [Google Scholar] [CrossRef]
- Pazzini, C.A.; Marques, L.S.; Pereira, L.J.; Corrêa-Faria, P.; Paiva, S.M. Allergic Reactions and Nickel-Free Braces: A Systematic Review. Braz. Oral Res. 2011, 25, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Pantuzo, M.C.G.; Zenóbio, E.G.; Marigo, H.D.A.; Zenóbio, M.A.F. Hypersensitivity to Conventional and to Nickel-Free Orthodontic Brackets. Braz. Oral Res. 2007, 21, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.F.; Zhang, B.B.; Wang, B.L.; Wang, Y.B.; Li, L.; Yang, Q.B.; Cui, L.S. Introduction of Antibacterial Function into Biomedical TiNi Shape Memory Alloy by the Addition of Element Ag. Acta Biomater. 2011, 7, 2758–2767. [Google Scholar] [CrossRef] [PubMed]
- Baigonakova, G.; Marchenko, E.; Chekalkin, T.; Kang, J.; Weiss, S.; Obrosov, A. Influence of Silver Addition on Structure, Martensite Transformations and Mechanical Properties of TiNi–Ag Alloy Wires for Biomedical Application. Materials 2020, 13, 4721. [Google Scholar] [CrossRef]
- Oh, K.-T.; Joo, U.-H.; Park, G.-H.; Hwang, C.-J.; Kim, K.-N. Effect of Silver Addition on the Properties of Nickel-Titanium Alloys for Dental Application. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 76, 306–314. [Google Scholar] [CrossRef]
- He, L.; Cui, Y.; Zhang, C. The Corrosion Resistance, Cytotoxicity, and Antibacterial Properties of Lysozyme Coatings on Orthodontic Composite Arch Wires. RSC Adv. 2020, 10, 18131–18137. [Google Scholar] [CrossRef]
- Iijima, M.; Zinelis, S.; Papageorgiou, S.N.; Brantley, W.; Eliades, T. Orthodontic Brackets. In Orthodontic Applications of Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 75–96. ISBN 9780081003831. [Google Scholar]
- Ntasi, A.; Al Jabbari, Y.; Mueller, W.D.; Eliades, G.; Zinelis, S. Metallurgical and Electrochemical Characterization of Contemporary Silver-Based Soldering Alloys. Angle Orthod. 2014, 84, 508–515. [Google Scholar] [CrossRef]
- Freitas, M.P.M.; Oshima, H.M.S.; Menezes, L.M.; Machado, D.C.; Viezzer, C. Cytotoxicity of Silver Solder Employed in Orthodontics. Angle Orthod. 2009, 79, 939–944. [Google Scholar] [CrossRef]
- Erdogan, A.T.; Nalbantgil, D.; Ulkur, F.; Sahin, F. Metal Ion Release from Silver Soldering and Laser Welding Caused by Different Types of Mouthwash. Angle Orthod. 2015, 85, 665–672. [Google Scholar] [CrossRef] [PubMed]
- da Costa, É.C.S.C.; Neves, J.G.; Borges, L.P.S.; Tsuzuki, F.M.; Correr, A.B.; Correr-Sobrinho, L.; Costa, A.R. Comparison of the Physico-Chemical Impact of Chlorhexidine and Silver Nanoparticles on Orthodontic Appliances Made with Laser and Silver Solder: An in Vitro Study. Int. Orthod. 2022, 20, 100631. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.F.; Fernandes, F.M.B.; Magalhães, R.; Camacho, E.; Lopes, A.; Paula, A.S.; Basu, R.; Schell, N. Thermo-Mechanical Characterization of NiTi Orthodontic Archwires with Graded Actuating Forces. J. Mech. Behav. Biomed. Mater. 2020, 107, 103747. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A. Current Status and Applications of Additive Manufacturing in Dentistry: A Literature-Based Review. J. Oral Biol. Craniofacial Res. 2019, 9, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Panayi, N.C. 3D Printing of in Office Custom-Made Brackets: Concept, Design, Production and Evidence. Semin. Orthod. 2023, 29, 11–16. [Google Scholar] [CrossRef]
- Graf, S.; Thakkar, D.; Hansa, I.; Muthuswamy Pandian, S.; Adel, S.M. 3D Metal Printing in Orthodontics: Current Trends, Biomaterials, Workflows and Clinical Implications. Semin. Orthod. 2023, 29, 34–42. [Google Scholar] [CrossRef]
- Abalos, C.; Paúl, A.; Mendoza, A.; Solano, E.; Gil, F.J. Influence of Topographical Features on the Fluoride Corrosion of Ni–Ti Orthodontic Archwires. J. Mater. Sci. Mater. Med. 2011, 22, 2813–2821. [Google Scholar] [CrossRef]
- Wichelhaus, A.; Geserick, M.; Hibst, R.; Sander, F.G. The Effect of Surface Treatment and Clinical Use on Friction in NiTi Orthodontic Wires. Dent. Mater. 2005, 21, 938–945. [Google Scholar] [CrossRef]
- Neumann, P.; Bourauel, C.; Jäger, A. Corrosion and Permanent Fracture Resistance of Coated and Conventional Orthodontic Wires. J. Mater. Sci. Mater. Med. 2002, 13, 141–147. [Google Scholar] [CrossRef]
- Chu, P.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-Surface Modification of Biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef]
- Katic, V.; Curkovic, L.; Bosnjak, M.; Peros, K.; Mandic, D.; Spals, S. Effect of PH, Fluoride and Hydrofluoric Acid Concentration on Ion Release from NiTi Wires with Various Coatings. Dent. Mater. J. 2017, 36, 149–156. [Google Scholar] [CrossRef] [PubMed]
- de Albuquerque, C.G.; Correr, A.B.; Venezian, G.C.; Santamaria Jr, M.; Tubel, C.A.; Vedovello, S.A.S. Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires. Braz. Dent. J. 2017, 28, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Muguruma, T.; Brantley, W.; Choe, H.-C.; Nakagaki, S.; Alapati, S.B.; Mizoguchi, I. Effect of Coating on Properties of Esthetic Orthodontic Nickel-Titanium Wires. Angle Orthod. 2012, 82, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Alsanea, J.; Al Shehri, H. Evaluation of Nanomechanical Properties, Surface Roughness, and Color Stability of Esthetic Nickel-Titanium Orthodontic Archwires. J. Int. Soc. Prev. Community Dent. 2019, 9, 33. [Google Scholar] [CrossRef]
- Pinzan-Vercelino, C.R.M.; de Araújo Gurgel, J.; Bramante, F.S.; Pessoa, T.F.; Albertin, S.A.; Fialho, M.P.N.; Pinzan, A. Coated Nickel Titanium Archwires and Their Uncoated Counterparts: In-Vitro Contemporary Comparison of Unloading Forces. Int. Orthod. 2020, 18, 374–379. [Google Scholar] [CrossRef]
- Batista, C.H.; Neves, J.G.; Terossi de Godoi, A.P.; Veroni Degan, V.; Custódio, W.; Furletti, V.; Vedovello Filho, M. Comparison of Force Delivery of Thermally Activated Aesthetic and Non-Aesthetic Ni-Ti Wires: An in-Vitro Study. Int. Orthod. 2020, 18, 359–365. [Google Scholar] [CrossRef]
- Jusufi Osmani, Z.; Poljšak, B.; Zelenika, S.; Kamenar, E.; Marković, K.; Perčić, M.; Katić, V. Ion Release and Surface Changes of Nickel–Titanium Archwires Induced by Changes in the PH Value of the Saliva—Significance for Human Health Risk Assessment. Materials 2022, 15, 1994. [Google Scholar] [CrossRef]
- Katić, V.; Ćurković, L.; Ujević Bošnjak, M.; Špalj, S. Determination of Corrosion Rate of Orthodontic Wires Based on Nickel-Titanium Alloy in Artificial Saliva. Materwiss. Werksttech. 2014, 45, 99–105. [Google Scholar] [CrossRef]
- Katić, V.; Ćurković, H.O.; Semenski, D.; Baršić, G.; Marušić, K.; Špalj, S. Influence of Surface Layer on Mechanical and Corrosion Properties of Nickel-Titanium Orthodontic Wires. Angle Orthod. 2014, 84, 1041–1048. [Google Scholar] [CrossRef]
- Katić, V.; Buljan, Z.I.; Špalj, S.; Ćurković, H.O. Corrosion Behavior of Coated and Uncoated Nickel-Titanium Orthodontic Wires in Artificial Saliva with Short-Term Prophylactic Fluoride Treatment. Int. J. Electrochem. Sci. 2018, 13, 4160–4170. [Google Scholar] [CrossRef]
- de Amorim, M.C.; da Rocha Gomes, S.; da Silva, B.P.; Aoki, I.V.; Basting, R.T. Surface Micromorphology, Ion Release and Resistance to Corrosion of Orthodontic Wires Aesthetic Coating Subject to Degradation. J. Bio-Tribo-Corros. 2022, 8, 22. [Google Scholar] [CrossRef]
- Nsaif, Y.A.; Mahmood, A.B. Effect of Fluoride Agent on the Load Deflection of Rhodium-Coated Arch Wires; An In-Vitro Study. Indian J. Public Health Res. Dev. 2019, 10, 823. [Google Scholar] [CrossRef]
- Musa Trolić, I.; Turco, G.; Contardo, L.; Serdarević, N.L.; Ćurković, H.O.; Špalj, S. Corrosion of Nickel-Titanium Orthodontic Archwires in Saliva and Oral Probiotic Supplements. Acta Stomatol. Croat. 2017, 51, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Musa Trolic, I.; Serdarevic, N.L.; Todoric, Z.; Budimir, A.; Spalj, S.; Otmacic Curkovic, H. Corrosion of Orthodontic Archwires in Artificial Saliva in the Presence of Lactobacillus Reuteri. Surf. Coat. Technol. 2019, 370, 44–52. [Google Scholar] [CrossRef]
- Musa Trolic, I.; Todoric, Z.; Pop Acev, D.; Makreski, P.; Pejova, B.; Spalj, S. Effects of the Presence of Probiotic Bacteria in the Aging Medium on the Surface Roughness and Chemical Composition of Two Dental Alloys. Microsc. Res. Tech. 2019, 82, 1384–1391. [Google Scholar] [CrossRef]
- Costa Lima, K.C.; Benini Paschoal, M.A.; de Araújo Gurgel, J.; Salvatore Freitas, K.M.; Maio Pinzan-Vercelino, C.R. Comparative Analysis of Microorganism Adhesion on Coated, Partially Coated, and Uncoated Orthodontic Archwires: A Prospective Clinical Study. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 611–616. [Google Scholar] [CrossRef]
- Usui, T.; Iwata, T.; Miyake, S.; Otsuka, T.; Koizumi, S.; Shirakawa, N.; Kawata, T. Mechanical and Frictional Properties of Aesthetic Orthodontic Wires Obtained by Hard Chrome Carbide Plating. J. Dent. Sci. 2018, 13, 151–159. [Google Scholar] [CrossRef]
- Albawardi, A.; Warunek, S.; Makowka, S.; Al-Jewair, T. Friction Forces Generated by Aesthetic Gummetal® (Ti-Nb) Orthodontic Archwires: A Comparative in Vitro Study. Int. Orthod. 2022, 20, 100683. [Google Scholar] [CrossRef]
- Ramasamy, M.; Prabhakar, R.; Thirunavukarasu, R.; Saravanan, R.; Rajvikram, N.; Sowndarya, V. Evalution of Color Stability of Coated Aesthetic Arch Wires. Eur. J. Mol. Clin. Med. 2020, 07, 5194–5200. [Google Scholar]
- Cowley, A.; Woodward, B. A Healthy Future: Platinum in Medical Applications. Platin. Met. Rev. 2011, 55, 98–107. [Google Scholar] [CrossRef]
- Johnson, A.; Shiraishi, T. Biocompatibility of Precious Metals for Medical Applications. In Precious Metals for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 37–55. ISBN 9780857094346. [Google Scholar]
- Khonsari, S.K.; Towhidi, N.; Cheraghi, M.S.; Allahkaram, S.R.; Rabizadeh, T. Pt Nanoparticles Coating on Orthodontic Ni-Ti Wires Using Pulse Current. In Proceedings of the 2011 IEEE Nanotechnology Materials and Devices Conference, Jeju, Republic of Korea, 18–21 October 2011; pp. 502–505. [Google Scholar]
- Sim, W.; Barnard, R.; Blaskovich, M.A.T.; Ziora, Z. Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007–2017). Antibiotics 2018, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Matijević, T.; Juzbašić, M.; Antolović-Požgain, A.; Škrlec, I. Antibacterial Activity of Silver and Its Application in Dentistry, Cardiology and Dermatology. Microorganisms 2020, 8, 1400. [Google Scholar] [CrossRef] [PubMed]
- Metin-Gürsoy, G.; Taner, L.; Barış, E. Biocompatibility of Nanosilver-Coated Orthodontic Brackets: An in Vivo Study. Prog. Orthod. 2016, 17, 39. [Google Scholar] [CrossRef] [PubMed]
- Mhaske, A.R.; Shetty, P.C.; Bhat, N.S.; Ramachandra, C.S.; Laxmikanth, S.M.; Nagarahalli, K.; Tekale, P.D. Antiadherent and Antibacterial Properties of Stainless Steel and NiTi Orthodontic Wires Coated with Silver against Lactobacillus Acidophilus—An in Vitro Study. Prog. Orthod. 2015, 16, 40. [Google Scholar] [CrossRef]
- Ghasemi, T.; Arash, V.; Rabiee, S.M.; Rajabnia, R.; Pourzare, A.; Rakhshan, V. Antimicrobial Effect, Frictional Resistance, and Surface Roughness of Stainless Steel Orthodontic Brackets Coated with Nanofilms of Silver and Titanium Oxide: A Preliminary Study. Microsc. Res. Tech. 2017, 80, 599–607. [Google Scholar] [CrossRef]
- Meyer-Kobbe, V.; Doll, K.; Stiesch, M.; Schwestka-Polly, R.; Demling, A. Comparison of Intraoral Biofilm Reduction on Silver-Coated and Silver Ion-Implanted Stainless Steel Bracket Material. J. Orofac. Orthop. Fortschritte Kieferorthopädie 2019, 80, 32–43. [Google Scholar] [CrossRef]
- Metin-Gürsoy, G.; Taner, L.; Akca, G. Nanosilver Coated Orthodontic Brackets: In Vivo Antibacterial Properties and Ion Release. Eur. J. Orthod. 2017, 39, 9–16. [Google Scholar] [CrossRef]
- Espinosa-Cristóbal, L.F.; López-Ruiz, N.; Cabada-Tarín, D.; Reyes-López, S.Y.; Zaragoza-Contreras, A.; Constandse-Cortéz, D.; Donohué-Cornejo, A.; Tovar-Carrillo, K.; Cuevas-González, J.C.; Kobayashi, T. Antiadherence and Antimicrobial Properties of Silver Nanoparticles against Streptococcus Mutans on Brackets and Wires Used for Orthodontic Treatments. J. Nanomater. 2018, 2018, 9248527. [Google Scholar] [CrossRef]
- Bindu, S.H.; Kala Vani, S.V.; Nirisha, G.; Madhuri, N.; Sai Deepa, B.; Hemadri, S. Evaluation of Antibacterial Effect of Silver Nanoparticle Coated Stainless Steel Band Material—An In Vitro Study. Orthod. J. Nepal 2019, 9, 13–19. [Google Scholar] [CrossRef]
- Prabha, R.D.; Kandasamy, R.; Sivaraman, U.S.; Nandkumar, M.A.; Nair, P.D. Antibacterial Nanosilver Coated Orthodontic Bands with Potential Implications in Dentistry. Indian J. Med. Res. 2016, 144, 580–586. [Google Scholar] [CrossRef]
- Bahrami, R.; Pourhajibagher, M.; Badiei, A.; Masaeli, R.; Tanbakuchi, B. Evaluation of the Cell Viability and Antimicrobial Effects of Orthodontic Bands Coated with Silver or Zinc Oxide Nanoparticles: An in Vitro Study. Korean J. Orthod. 2023, 53, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, I.S.; Viale, A.B.; Sormani, N.N.; Pizzol, K.E.D.C.; Araujo-Nobre, A.R.D.; Oliveira, P.C.S.D.; Barud, H.G.D.O.; Antonio, S.G.; Barud, H.D.S. Antimicrobial Orthodontic Wires Coated with Silver Nanoparticles. Braz. Arch. Biol. Technol. 2020, 63, e20190339. [Google Scholar] [CrossRef]
- Gil, F.J.; Espinar-Escalona, E.; Clusellas, N.; Fernandez-Bozal, J.; Artes-Ribas, M.; Puigdollers, A. New Bactericide Orthodonthic Archwire: NiTi with Silver Nanoparticles. Metals 2020, 10, 702. [Google Scholar] [CrossRef]
- Zeidan, N.K.; Enany, N.M.; Mohamed, G.G.; Marzouk, E.S. The Antibacterial Effect of Silver, Zinc-Oxide and Combination of Silver/ Zinc Oxide Nanoparticles Coating of Orthodontic Brackets (an in Vitro Study). BMC Oral Health 2022, 22, 230. [Google Scholar] [CrossRef]
- Anand, B.G.; Shejale, K.P.; Rajesh Kumar, R.; Thangam, R.; Prajapati, K.P.; Kar, K.; Mala, R. Bioactivation of an Orthodontic Wire Using Multifunctional Nanomaterials to Prevent Plaque Accumulation. Biomater. Adv. 2023, 148, 213346. [Google Scholar] [CrossRef]
- Ryu, H.S.; Bae, I.H.; Lee, K.G.; Hwang, H.S.; Lee, K.H.; Koh, J.T.; Cho, J.H. Antibacterial Effect of Silver-Platinum Coating for Orthodontic Appliances. Angle Orthod. 2012, 82, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Sharma, P.; Goje, S. Comparative Evaluation of Frictional Resistance of Silver-Coated Stainless Steel Wires with Uncoated Stainless Steel Wires: An In Vitro Study. Contemp. Clin. Dent. 2018, 9, 331. [Google Scholar] [CrossRef]
- Shah, P.; Sharma, P.; Naik, H.; Patel, K.; Panchal, C. A Comparative Evaluation of Frictional Resistance and Surface Roughness of Silver Coated and Uncoated Stainless-Steel Bracket Wire Assembly- An in-Vitro Study. J. Clin. Exp. Dent. 2023, 15, e411–e419. [Google Scholar] [CrossRef]
- Arash, V.; Anoush, K.; Rabiee, S.M.; Rahmatei, M.; Tavanafar, S. The Effects of Silver Coating on Friction Coefficient and Shear Bond Strength of Steel Orthodontic Brackets. Scanning 2015, 37, 294–299. [Google Scholar] [CrossRef]
- Shirakawa, N.; Iwata, T.; Miyake, S.; Otsuka, T.; Koizumi, S.; Usui, T.; Kawata, T. Development of the Aesthetic Orthodontic Appliances Using a Silver Plating Process: The Report on Peel Resistance. Biomed. Res. 2017, 28, 3217–3221. [Google Scholar]
- Usui, T.; Miyake, S.; Iwata, T.; Otsuka, T.; Koizumi, S.; Shirakawa, N.; Kawata, T. Aesthetic Characteristics of the Orthodontic Wire with Silver Plating. Biomed. Res. 2017, 28, 4937–4941. [Google Scholar]
- Ozeki, K.; Yuhta, T.; Aoki, H.; Asaoka, T.; Daisaku, T.; Fukui, Y. Deterioration in the Superelasticity of Ti Sputter Coated on NiTi Orthodontic Wire. Biomed. Mater. Eng. 2003, 13, 355–362. [Google Scholar] [PubMed]
- Anuradha, P.; Varma, N.K.S.; Balakrishnan, A. Reliability Performance of Titanium Sputter Coated Ni–Ti Arch Wires: Mechanical Performance and Nickel Release Evaluation. Biomed. Mater. Eng. 2015, 26, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, K.; Yuhta, T.; Aoki, H.; Fukui, Y. Inhibition of Ni Release from NiTi Alloy by Hydroxyapatite, Alumina, and Titanium Sputtered Coatings. Biomed. Mater. Eng. 2003, 13, 271–279. [Google Scholar]
- Prashanth, L.; Kattapagari, K.; Chitturi, R.; Baddam, V.R.; Prasad, L. A Review on Role of Essential Trace Elements in Health and Disease. J. Dr. NTR Univ. Health Sci. 2015, 4, 75. [Google Scholar] [CrossRef]
- Tapiero, H.; Tew, K.D. Trace Elements in Human Physiology and Pathology: Zinc and Metallothioneins. Biomed. Pharmacother. 2003, 57, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Kogan, S.; Sood, A.; Garnick, M.S. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications. Wounds 2017, 29, 102–106. [Google Scholar]
- Karandish, M.; Pakshir, M.; Moghimi, M.; Jafarpour, D. Evaluating the Mechanical Properties of Zinc-Coated Stainless Steel Orthodontic Wires Using Physical Vapor Deposition. Int. J. Dent. 2021, 2021, 6651289. [Google Scholar] [CrossRef]
- Mostaed, E.; Sikora-Jasinska, M.; Drelich, J.W.; Vedani, M. Zinc-Based Alloys for Degradable Vascular Stent Applications. Acta Biomater. 2018, 71, 1–23. [Google Scholar] [CrossRef]
- Abendrot, M.; Kalinowska-Lis, U. Zinc-Containing Compounds for Personal Care Applications. Int. J. Cosmet. Sci. 2018, 40, 319–327. [Google Scholar] [CrossRef]
- Hernández-Escobar, D.; Champagne, S.; Yilmazer, H.; Dikici, B.; Boehlert, C.J.; Hermawan, H. Current Status and Perspectives of Zinc-Based Absorbable Alloys for Biomedical Applications. Acta Biomater. 2019, 97, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Sousa, V.F.C.; Silva, F.J.G. Recent Advances on Coated Milling Tool Technology-a Comprehensive Review. Coatings 2020, 10, 235. [Google Scholar] [CrossRef]
- Simka, W.; Kaczmarek, M.; Baron-Wiecheć, A.; Nawrat, G.; Marciniak, J.; Żak, J. Electropolishing and Passivation of NiTi Shape Memory Alloy. Electrochim. Acta 2010, 55, 2437–2441. [Google Scholar] [CrossRef]
- Espinar, E.; Llamas, J.M.; Michiardi, A.; Ginebra, M.P.; Gil, F.J. Reduction of Ni Release and Improvement of the Friction Behaviour of NiTi Orthodontic Archwires by Oxidation Treatments. J. Mater. Sci. Mater. Med. 2011, 22, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- HORIUCHI, Y.; HORIUCHI, M.; HANAWA, T.; SOMA, K. Effect of Surface Modification on the Photocatalysis of Ti-Ni Alloy in Orthodontics. Dent. Mater. J. 2007, 26, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Chun, M.J.; Shim, E.; Kho, E.H.; Park, K.J.; Jung, J.; Kim, J.M.; Kim, B.; Lee, K.H.; Cho, D.L.; Bai, D.H.; et al. Surface Modification of Orthodontic Wires with Photocatalytic Titanium Oxide for Its Antiadherent and Antibacterial Properties. Angle Orthod. 2007, 77, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Chhattani, S.; Shetty, P.C.; Laxmikant, S.; Ramachandra, C. In Vitro Assessment of Photocatalytic Titanium Oxide Surface-Modified Stainless Steel and Nickel Titanium Orthodontic Wires for Its Antiadherent and Antibacterial Properties against Streptococcus Mutans. J. Indian Orthod. Soc. 2014, 48, 82–87. [Google Scholar] [CrossRef]
- Awata, M.; Okada, M.; Nambu, T.; Matsumoto, N. Improvement of Photocatalytic Activity of TiO2 Coating by the Modified Sol-Gel Method. Nano Biomed. 2015, 7, 51–62. [Google Scholar] [CrossRef]
- Özyildz, F.; Uzel, A.; Hazar, A.S.; Güden, M.; Ölmez, S.; Aras, I.; Karaboz, İ. Photocatalytic Antimicrobial Effect of TiO2 Anatase Thin-Film–Coated Orthodontic Arch Wires on 3 Oral Pathogens. Turk. J. Biol. 2014, 38, 289–295. [Google Scholar] [CrossRef]
- Salehi, P.; Babanouri, N.; Roein-Peikar, M.; Zare, F. Long-Term Antimicrobial Assessment of Orthodontic Brackets Coated with Nitrogen-Doped Titanium Dioxide against Streptococcus mutans. Prog. Orthod. 2018, 19, 35. [Google Scholar] [CrossRef]
- Cao, B.; Wang, Y.; Li, N.; Liu, B.; Zhang, Y. Preparation of an Orthodontic Bracket Coated with an Nitrogen-Doped TiO2-XNy Thin Film and Examination of Its Antimicrobial Performance. Dent. Mater. J. 2013, 32, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.G.; Shetty, P.C.; Ramachandra, C.S.; Bhat, N.S.; Laxmikanth, S.M. In Vitro Assessment of Photocatalytic Titanium Oxide Surface Modified Stainless Steel Orthodontic Brackets for Antiadherent and Antibacterial Properties against Lactobacillus Acidophilus. Angle Orthod. 2011, 81, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Kaliaraj, G.S.; Ramadoss, A.; Sundaram, M.; Balasubramanian, S.; Muthirulandi, J. Studies of Calcium-Precipitating Oral Bacterial Adhesion on TiN, TiO2 Single Layer, and TiN/TiO2 Multilayer-Coated 316L SS. J. Mater. Sci. 2014, 49, 7172–7180. [Google Scholar] [CrossRef]
- Baby, R.D.; Subramaniam, S.; Arumugam, I.; Padmanabhan, S. Assessment of Antibacterial and Cytotoxic Effects of Orthodontic Stainless Steel Brackets Coated with Different Phases of Titanium Oxide: An in-Vitro Study. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Fatani, E.J.; Almutairi, H.H.; Alharbi, A.O.; Alnakhli, Y.O.; Divakar, D.D.; Muzaheed; Alkheraif, A.A.; Khan, A.A. In Vitro Assessment of Stainless Steel Orthodontic Brackets Coated with Titanium Oxide Mixed Ag for Anti-Adherent and Antibacterial Properties against Streptococcus mutans and Porphyromonas gingivalis. Microb. Pathog. 2017, 112, 190–194. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, W.; Bai, X.; Song, X.; Wang, C.; Gao, X.; Tian, X.; Liu, F. Discussion on the Development of Nano Ag/TiO2 Coating Bracket and Its Antibacterial Property and Biocompatibility in Orthodontic Treatment. Pak. J. Pharm. Sci. 2015, 28, 807–810. [Google Scholar]
- Kielan-Grabowska, Z.; Bącela, J.; Zięty, A.; Seremak, W.; Gawlik-Maj, M.; Kawala, B.; Borak, B.; Detyna, J.; Sarul, M. Improvement of Properties of Stainless Steel Orthodontic Archwire Using TiO2:Ag Coating. Symmetry 2021, 13, 1734. [Google Scholar] [CrossRef]
- Bącela, J.J.; Kielan-Grabowska, Z.; Borak, B.; Sobieszczańska, B.; Walczuk, U.; Kawala, B.; Zięty, A.; Detyna, J.; Sarul, M. Antiadherent and Antibacterial Properties of TiO2-Coated and TiO2:Ag-Coated Stainless Steel Orthodontic Wires against S. mutans Bacteria. Acta Bioeng. Biomech. 2022, 24, 107–118. [Google Scholar] [CrossRef]
- Li, N.; Zhou, H.J.; Han, B.; Zhang, Y.J.; Cao, B.C. Friction Properties of Orthodontic Brackets Coated with TiO2-XNy. Chin. J. Tissue Eng. Res. 2014, 18, 7621–7626. [Google Scholar] [CrossRef]
- Mollabashi, V.; Farmany, A.; Alikhani, M.Y.; Sattari, M.; Soltanian, A.R.; Kahvand, P.; Banisafar, Z. Effects of TiO2-Coated Stainless Steel Orthodontic Wires on Streptococcus Mutans Bacteria: A Clinical Study. Int. J. Nanomed. 2020, 15, 8759–8766. [Google Scholar] [CrossRef]
- Jung, O.; Becker, J.-P.; Smeets, R.; Gosau, M.; Becker, G.; Kahl-Nieke, B.; Jung, A.-K.; Heiland, M.; Kopp, A.; Barbeck, M.; et al. Surface Characteristics of Esthetic Nickel–Titanium and Beta-Titanium Orthodontic Archwires Produced by Plasma Electrolytic Oxidation (PEO)—Primary Results. Materials 2019, 12, 1403. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xu, J.L.; Yu, D.Z.; Wang, F.P.; Zhao, L.C. Wear Resistance of Micro-Arc Oxidation Coatings on Biomedical NiTi Alloy. J. Alloys Compd. 2009, 487, 391–394. [Google Scholar] [CrossRef]
- Campeol, D.A.; Fontoura, C.P.; Rodrigues, M.M.; Aguzzoli, C. Assessment of Mechanical and Corrosion Properties of Plasma Oxidized Medical Grade NiTi Wire. Vacuum 2020, 171, 109013. [Google Scholar] [CrossRef]
- Supriadi, S.; Suharno, B.; Nugraha, N.K.; Yasinta, A.O.; Annur, D. Adhesiveness of TiO2 PVD Coating on Electropolished Stainless Steel 17–4 PH Orthodontic Bracket. Mater. Res. Express 2019, 6, 094003. [Google Scholar] [CrossRef]
- Fu, T.; Wen, C.S.; Lu, J.; Zhou, Y.M.; Ma, S.G.; Dong, B.H.; Liu, B.G. Sol-Gel Derived TiO2 Coating on Plasma Nitrided 316L Stainless Steel. Vacuum 2012, 86, 1402–1407. [Google Scholar] [CrossRef]
- Liu, J.; Lou, Y.; Zhang, C.; Yin, S.; Li, H.; Sun, D.; Sun, X. Improved Corrosion Resistance and Antibacterial Properties of Composite Arch-Wires by N-Doped TiO2 Coating. RSC Adv. 2017, 7, 43938–43949. [Google Scholar] [CrossRef]
- Solanki, L.A.; Dinesh, S.P.S.; Jain, R.K.; Balasubramaniam, A. Effects of Titanium Oxide Coating on the Antimicrobial Properties, Surface Characteristics, and Cytotoxicity of Orthodontic Brackets—A Systematic Review and Meta Analysis of in-Vitro Studies. J. Oral Biol. Craniofacial Res. 2023, 13, 553–562. [Google Scholar] [CrossRef]
- Asiry, M.A.; AlShahrani, I.; Almoammar, S.; Durgesh, B.H.; Al Kheraif, A.A.; Hashem, M.I. Influence of Epoxy, Polytetrafluoroethylene (PTFE) and Rhodium Surface Coatings on Surface Roughness, Nano-Mechanical Properties and Biofilm Adhesion of Nickel Titanium (Ni-Ti) Archwires. Mater. Res. Express 2018, 5, 026511. [Google Scholar] [CrossRef]
- Madasamy, R.; Prabhakar, R.; Ramanadhan, T.; Ramachandran, S.; Natrajan, R.; Vasudevan, S. Assessment of Roughness of Fiber-Reinforced Polymer Composite Wires and Other Coated Esthetic Archwires. World J. Dent. 2021, 12, 156–159. [Google Scholar] [CrossRef]
- Tawakal, M.S.; Abdelghany Metwally, A.M.; El-Wassefy, N.A.; Tawfik, M.A.; Shamaa, M.S. Static Friction, Surface Roughness, and Antibacterial Activity of Orthodontic Brackets Coated with Silver and Silver Chitosan Nanoparticles. J. World Fed. Orthod. 2023. [Google Scholar] [CrossRef]
- Setiyorini, Y.; Pintowantoro, S. Biocompatibility Improvement of NiTi Orthodontic Wire from Various Coatings. Adv. Mater. Res. 2013, 789, 225–231. [Google Scholar] [CrossRef]
- Pintowantoro, S.; Setiyorini, Y. Reduction of Nickel Ion Release on a TiO2 Coated onto an Orthodontic Wire. Adv. Mater. Res. 2013, 789, 204–209. [Google Scholar] [CrossRef]
- Supriadi, S.; Ovilia, A.; Ilmaniar, N.; Suharno, B. Formation of Tio2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 Ph Using Physical Vapor Deposition Method. Key Eng. Mater. 2020, 846, 169–174. [Google Scholar] [CrossRef]
- Kurtoğlu, S.F.; Yağcı, M.B.; Uzun, A.; Ünal, U.; Canadinc, D. Enhancing Biocompatibility of NiTi Shape Memory Alloys by Simple NH3 Treatments. Appl. Surf. Sci. 2020, 525, 146547. [Google Scholar] [CrossRef]
- Math, M.; Shah, A.G.; Gangurde, P.; Karandikar, A.G.; Gheware, A.; Jadhav, B.S. In-Vitro Comparative Assessment of Antibacterial and Anti-Adherent Effect of Two Types of Surface Modificants on Stainless Steel Orthodontic Brackets Against Streptococcus Mutans. J. Indian Orthod. Soc. 2021, 56, 282–289. [Google Scholar] [CrossRef]
- Kim, H.; Johnson, J.W. Corrosion of Stainless-Steel, Nickel-Titanium, Coated Nickel-Titanium, and Titanium Orthodontic Wires. Angle Orthod. 1999, 69, 39–44. [Google Scholar] [CrossRef]
- Kao, C.T.; Ding, S.J.; Chen, Y.C.; Huang, T.H. The Anticorrosion Ability of Titanium Nitride (TiN) Plating on an Orthodontic Metal Bracket and Its Biocompatibility. J. Biomed. Mater. Res. 2002, 63, 786–792. [Google Scholar] [CrossRef]
- Gil, F.J.; Solano, E.; Mendoza, A.; Pena, J. Inhibition of Ni Release from NiTi and NiTiCu Orthodontic Archwires by Nitrogen Diffusion Treatment. J. Appl. Biomater. Biomech. 2004, 2, 151–155. [Google Scholar] [CrossRef]
- Iijima, M.; Yuasa, T.; Endo, K.; Muguruma, T.; Ohno, H.; Mizoguchi, I. Corrosion Behavior of Ion Implanted Nickel-Titanium Orthodontic Wire in Fluoride Mouth Rinse Solutions. Dent. Mater. J. 2010, 29, 53–58. [Google Scholar] [CrossRef]
- Huang, T.-H.; Guo, J.-U.; Kao, C.T. A Comparison of the Friction Associated with Diamond-like Carbon (DLC) or Titanium Nitride (TiN) Plating Metal Brackets. Surf. Coat. Technol. 2010, 205, 1917–1921. [Google Scholar] [CrossRef]
- Kao, C.-T.; Guo, J.-U.; Huang, T.-H. Comparison of Friction Force between Corroded and Noncorroded Titanium Nitride Plating of Metal Brackets. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 594–600. [Google Scholar] [CrossRef]
- Rongo, R.; Ametrano, G.; Gloria, A.; Spagnuolo, G.; Galeotti, A.; Paduano, S.; Valletta, R.; D’Antò, V. Effects of Intraoral Aging on Surface Properties of Coated Nickel-Titanium Archwires. Angle Orthod. 2014, 84, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Xie, Y.; Zhang, J.; Wei, Q.; Zhou, B.; Luo, J.; Wang, Y.; Yu, Z.M.; Tang, Z.G. TiN Coated Stainless Steel Bracket: Tribological, Corrosion Resistance, Biocompatibility and Mechanical Performance. Surf. Coat. Technol. 2015, 277, 227–233. [Google Scholar] [CrossRef]
- Rongo, R.; Valletta, R.; Bucci, R.; Rivieccio, V.; Galeotti, A.; Michelotti, A.; D’Antò, V. In Vitro Biocompatibility of Nickel-Titanium Esthetic Orthodontic Archwires. Angle Orthod. 2016, 86, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Sugisawa, H.; Kitaura, H.; Ueda, K.; Kimura, K.; Ishida, M.; Ochi, Y.; Kishikawa, A.; Ogawa, S.; Takano-Yamamoto, T. Corrosion Resistance and Mechanical Properties of Titanium Nitride Plating on Orthodontic Wires. Dent. Mater. J. 2018, 37, 286–292. [Google Scholar] [CrossRef]
- Arici, N.; Akdeniz, B.S.; Oz, A.A.; Gencer, Y.; Tarakci, M.; Arici, S. Effectiveness of Medical Coating Materials in Decreasing Friction between Orthodontic Brackets and Archwires. Korean J. Orthod. 2021, 51, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.P.; Gontijo, L.C.; Franco Júnior, A.R.; Pereira, M.F.; Schuenck, R.P.; Malacarne-Zanon, J. Evaluation of Antimicrobial Potential and Surface Morphology in Thin Films of Titanium Nitride and Calcium Phosphate on Orthodontic Brackets. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 209–214. [Google Scholar] [CrossRef]
- Liu, J.K.; Liu, I.H.; Liu, C.; Chang, C.J.; Kung, K.C.; Liu, Y.T.; Lee, T.M.; Jou, J.L. Effect of Titanium Nitride/Titanium Coatings on the Stress Corrosion of Nickel-Titanium Orthodontic Archwires in Artificial Saliva. Appl. Surf. Sci. 2014, 317, 974–981. [Google Scholar] [CrossRef]
- Krishnan, V.; Krishnan, A.; Remya, R.; Ravikumar, K.K.; Nair, S.A.; Shibli, S.M.A.; Varma, H.K.; Sukumaran, K.; Kumar, K.J. Development and Evaluation of Two PVD-Coated β-Titanium Orthodontic Archwires for Fluoride-Induced Corrosion Protection. Acta Biomater. 2011, 7, 1913–1927. [Google Scholar] [CrossRef]
- Krishnan, V.; Ravikumar, K.K.; Sukumaran, K.; Jyothindra Kumar, K. In Vitro Evaluation of Physical Vapor Deposition Coated Beta Titanium Orthodontic Archwires. Angle Orthod. 2012, 82, 22–29. [Google Scholar] [CrossRef]
- Golshah, A.; Feyli, S. Effect of Zirconium Oxide Nano-Coating on Frictional Resistance of Orthodontic Wires. J. Orthod. Sci. 2022, 11, 35. [Google Scholar] [CrossRef]
- Wu, H.; Yang, J.; Yan, Y.; Zheng, B.; Algahefi, A.L.; Ma, S.; Liu, Y. Study of Al–SiO2 Aesthetic Composite Coating on Orthodontic Metal Archwire. Coatings 2022, 12, 746. [Google Scholar] [CrossRef]
- Krishnan, M.; Seema, S.; Sukumaran, K.; Pawar, V. Phase Transitions in Coated Nickel Titanium Arch Wires: A Differential Scanning Calorimetric and X-Ray Diffraction Analysis. Bull. Mater. Sci. 2012, 35, 905–911. [Google Scholar] [CrossRef]
- Ramazanzadeh, B.; Jahanbin, A.; Yaghoubi, M.; Shahtahmassbi, N.; Ghazvini, K.; Shakeri, M.; Shafaee, H. Comparison of Antibacterial Effects of ZnO and CuO Nanoparticles Coated Brackets against Streptococcus Mutans. J. Dent. 2015, 16, 200–205. [Google Scholar]
- Kachoei, M.; Divband, B.; Eskandarinejad, F.; Khatamian, M. Deposition of ZnO Nano Particles on Stainless Steel Orthodontic Wires by Chemical Solution Method for Friction Reduction Propose. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 104–112. [Google Scholar]
- Behroozian, A.; Kachoei, M.; Khatamian, M.; Divband, B. The Effect of ZnO Nanoparticle Coating on the Frictionalresistance between Orthodontic Wires and Ceramic Brackets. J. Dent. Res. Dent. Clin. Dent. Prospect. 2016, 10, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Kachoei, M.; Nourian, A.; Divband, B.; Kachoei, Z.; Shirazi, S. Zinc-Oxide Nanocoating for Improvement of the Antibacterial and Frictional Behavior of Nickel-Titanium Alloy. Nanomedicine 2016, 11, 2511–2527. [Google Scholar] [CrossRef]
- Hammad, S.M.; El-Wassefy, N.A.; Shamaa, M.S.; Fathy, A. Evaluation of Zinc-Oxide Nanocoating on the Characteristics and Antibacterial Behavior of Nickel-Titanium Alloy. Dent. Press J. Orthod. 2020, 25, 51–58. [Google Scholar] [CrossRef]
- Gholami, M.; Esmaeilzadeh, M.; Kachoei, Z.; Kachoei, M.; Divband, B. Influence of Physical Dimension and Morphological-Dependent Antibacterial Characteristics of ZnO Nanoparticles Coated on Orthodontic NiTi Wires. Biomed Res. Int. 2021, 2021, 6397698. [Google Scholar] [CrossRef]
- Elhelbawy, N.; Ellaithy, M. Comparative Evaluation of Stainless-Steel Wires and Brackets Coated with Nanoparticles of Chitosan or Zinc Oxide upon Friction: An in Vitro Study. Int. Orthod. 2021, 19, 274–280. [Google Scholar] [CrossRef]
- Palanivel, J.; Srinivasan, D.; Chakravathy, N.C.S. Comparison of the Frictional Resistance and Optical Properties of Aluminum Oxide and Zinc Oxide Coated Nickel Titanium Archwires—An in Vitro Study. APOS Trends Orthod. 2022, 12, 168. [Google Scholar] [CrossRef]
- Tanbakuchi, B.; Kharrazi, S.; Nikfarjam, M.; Akhoundi, M.S.A.; Shahroudi, A.S. Comparative Assessment of the Orthodontic Wire’s Friction Coated with Zinc Oxide Nanoparticles by Two Methods of Chemical Precipitation and Hydrothermal Process. Folia Med. 2022, 64, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Ameli, N.; Ghorbani, R.; Asadi, S.; Zarrinzade, Z. Investigation of the Effects of Orthodontic Brackets Coated by Silver Hydroxyapatite, Copper Oxide, and Titanium Oxide Nanoparticles on Wire-Bracket Friction. APOS Trends Orthod. 2022, 12, 27. [Google Scholar] [CrossRef]
- Ameli, N.; Asadi, S.; Ghorbani, R.; Mohebi, S.; Hans, M. Comparative Antibacterial Efficacy of Orthodontic Brackets Coated with Titanium Dioxide, Copper Oxide, and Hydroxyapatite-Silver Nanoparticles against Streptococcus mutans. Middle East J. Rehabil. Health Stud. 2022, 9, e119536. [Google Scholar] [CrossRef]
- Venkatesan, K.; Kailasam, V.; Padmanabhan, S. Evaluation of Titanium Dioxide Coating on Surface Roughness of Nickel-Titanium Archwires and Its Influence on Streptococcus Mutans Adhesion and Enamel Mineralization: A Prospective Clinical Study. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 199–208. [Google Scholar] [CrossRef]
- Silveira, R.E.; Elias, C.N.; Amaral, F.L.B. Assessment of Frictional Resistance and Surface Roughness in Orthodontic Wires Coated with Two Different Nanoparticles. Microsc. Res. Tech. 2022, 85, 1884–1890. [Google Scholar] [CrossRef]
- Chaturvedi, T.; Indumathi, P.; Sharma, V.; Agrawal, A.; Singh, D.; Upadhyay, C. Evaluation of Surface-Modified Orthodontic Wires by Different Concentration and Dipping Duration of Titanium Oxide (TiO2) Nanoparticles. J. Orthod. Sci. 2023, 12, 3. [Google Scholar] [CrossRef]
- Redlich, M.; Gorodnev, A.; Feldman, Y.; Kaplan-Ashiri, I.; Tenne, R.; Fleischer, N.; Genut, M.; Feuerstein, N. Friction Reduction and Wear Resistance of Electro-Co-Deposited Inorganic Fullerene-like WS 2 Coating for Improved Stainless Steel Orthodontic Wires. J. Mater. Res. 2008, 23, 2909–2915. [Google Scholar] [CrossRef]
- Amorodnitzky-Naveh, G.R.S.; Redlich, M.; Katz, A.; Adini, A.R.; Gorodnev, A.; Rapoport, L.; Moshkovich, A.; Cohen, S.R.; Rosentsveig, R.; Moshonov, J.; et al. Towards Medical Applications of Self-Lubricating Coatings with Fullerene-like (IF) WS2 Nanoparticles. Int. J. Nano Biomater. 2010, 3, 140. [Google Scholar] [CrossRef]
- Katz, A.; Redlich, M.; Rapoport, L.; Wagner, H.D.; Tenne, R. Self-Lubricating Coatings Containing Fullerene-like WS2 Nanoparticles for Orthodontic Wires and Other Possible Medical Applications. Tribol. Lett. 2006, 21, 135–139. [Google Scholar] [CrossRef]
- Redlich, M.; KATZ, A.; RAPOPORT, L.; WAGNER, H.; FELDMAN, Y.; TENNE, R. Improved Orthodontic Stainless Steel Wires Coated with Inorganic Fullerene-like Nanoparticles of WS2 Impregnated in Electroless Nickel–Phosphorous Film. Dent. Mater. 2008, 24, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Gracco, A.; Dandrea, M.; Deflorian, F.; Zanella, C.; De Stefani, A.; Bruno, G.; Stellini, E. Application of a Molybdenum and Tungsten Disulfide Coating to Improve Tribological Properties of Orthodontic Archwires. Nanomaterials 2019, 9, 753. [Google Scholar] [CrossRef] [PubMed]
- Samorodnitzky-Naveh, G.R.; Redlich, M.; Rapoport, L.; Feldman, Y.; Tenne, R. Inorganic Fullerene-like Tungsten Disulfide Nanocoating for Friction Reduction of Nickel–Titanium Alloys. Nanomedicine 2009, 4, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wu, X.; Wang, Y.; Li, B.; Yang, S. Study of Corrosion Resistance Property and Microstructure of TiNi Shape Memory Alloy Modified by Pulsed High-Energy Density Plasma. Appl. Surf. Sci. 2000, 157, 167–177. [Google Scholar] [CrossRef]
- Shevchenko, N.; Pham, M.-T.; Maitz, M.F. Studies of Surface Modified NiTi Alloy. Appl. Surf. Sci. 2004, 235, 126–131. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Shang, H.; Lin, J. Comparison of TiN and CNx Coatings on Orthodontic Stainless Steel: Tribological and Biological Evaluation. Surf. Coat. Technol. 2019, 362, 381–387. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, Y.; Wang, Q.; Zhang, D.; Zhang, S. Influence of TiN Coating on the Biocompatibility of Medical NiTi Alloy. Colloids Surf. B Biointerfaces 2013, 101, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lou, J.; He, H.; Xie, Y. Comparative Investigation on the Tribological Performances of TiN, TiCN, and Ti-DLC Film-Coated Stainless Steel. JOM 2019, 71, 4872–4879. [Google Scholar] [CrossRef]
- Wang, X.; Bai, S.; Li, F.; Li, D.; Zhang, J.; Tian, M.; Zhang, Q.; Tong, Y.; Zhang, Z.; Wang, G.; et al. Effect of Plasma Nitriding and Titanium Nitride Coating on the Corrosion Resistance of Titanium. J. Prosthet. Dent. 2016, 116, 450–456. [Google Scholar] [CrossRef]
- Shukla, K.; Rane, R.; Alphonsa, J.; Maity, P.; Mukherjee, S. Structural, Mechanical and Corrosion Resistance Properties of Ti/TiN Bilayers Deposited by Magnetron Sputtering on AISI 316L. Surf. Coat. Technol. 2017, 324, 167–174. [Google Scholar] [CrossRef]
- Bellini, H.; Moyano, J.; Gil, J.; Puigdollers, A. Comparison of the Superelasticity of Different Nickel–Titanium Orthodontic Archwires and the Loss of Their Properties by Heat Treatment. J. Mater. Sci. Mater. Med. 2016, 27, 158. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Mozafari, M. Biocompatibility of Alumina-based Biomaterials–A Review. J. Cell. Physiol. 2019, 234, 3321–3335. [Google Scholar] [CrossRef] [PubMed]
- Gautam, C.; Joyner, J.; Gautam, A.; Rao, J.; Vajtai, R. Zirconia Based Dental Ceramics: Structure, Mechanical Properties, Biocompatibility and Applications. Dalt. Trans. 2016, 45, 19194–19215. [Google Scholar] [CrossRef]
- Kaliaraj, G.S.; Vishwakarma, V.; Kirubaharan, K.; Dharini, T.; Ramachandran, D.; Muthaiah, B. Corrosion and Biocompatibility Behaviour of Zirconia Coating by EBPVD for Biomedical Applications. Surf. Coat. Technol. 2018, 334, 336–343. [Google Scholar] [CrossRef]
- Louro, C.S.; Fróis, A.; Cerqueira, M. Are W Based Coatings a Surface Alternative to the Adverse Ni Release in Orthodontic Applications? (Poster). In Proceedings of the Iberian Vacuum Conference—RIVA-X, Bilbao, Spain, 4–6 October 2017. [Google Scholar]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Moradpoor, H.; Safaei, M.; Mozaffari, H.R.; Sharifi, R.; Imani, M.M.; Golshah, A.; Bashardoust, N. An Overview of Recent Progress in Dental Applications of Zinc Oxide Nanoparticles. RSC Adv. 2021, 11, 21189–21206. [Google Scholar] [CrossRef]
- Puts, G.J.; Crouse, P.; Ameduri, B.M. Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer. Chem. Rev. 2019, 119, 1763–1805. [Google Scholar] [CrossRef]
- Roina, Y.; Auber, F.; Hocquet, D.; Herlem, G. EPTFE Functionalization for Medical Applications. Mater. Today Chem. 2021, 20, 100412. [Google Scholar] [CrossRef]
- Kameda, T.; Sato, H.; Oka, S.; Miyazaki, A.; Ohkuma, K.; Terada, K. Low Temperature Polytetrafluoroethylene (PTFE) Coating Improves the Appearance of Orthodontic Wires without Changing Their Mechanical Properties. Dent. Mater. J. 2020, 39, 721–734. [Google Scholar] [CrossRef]
- Abdulkader, Y.C.; Kamaruddin, A.F.; Mydin, R.B.S.M.N. Effects of Salivary PH on Coating Durability of Two Different Aesthetic Archwire Coatings under a Simulated Intraoral Environment. Saudi Dent. J. 2020, 32, 306–313. [Google Scholar] [CrossRef]
- Mareci, D.; Earar, K.; Zetu, I.; Bolat, G.; Crimu, C.; Istrate, B.; Munteanu, C.; Matei, M. Comparative Electrochemical Behaviour of Uncoated and Coated NiTi for Dental Orthodontic Wires. Mater. Plast. 2015, 2, 150–153. [Google Scholar]
- Earar, K.; Matei, M.N.; Mareci, D.; Trinca, L.C.; Ariton, M.A.; Arotaritei, D.; Cerghizan, D.; Bica, C.; Ciupilan, C. The Electrochemical Behaviour of NiTi Orthodontic Wires with Polytetrafluoroethylene Coating in Red Ruffled Pimiento Peppers Paste. Rev. Chim. 2016, 67, 1850–1853. [Google Scholar]
- Matei, M.N.; Earar, K.; Trinca, L.C.; Mareci, D.; Fotea, L.; Peptu, C.A.; Bica, C. Degradation Characteristics of Poly-Tetrafluoroethylene Coatings on Stainless Steel Orthodontic Wires Immersed in Tuna Fish Derived Products. Rev. Chim. 2016, 67, 800–807. [Google Scholar]
- Farronato, G.; Maijer, R.; Carìa, M.P.; Esposito, L.; Alberzoni, D.; Cacciatore, G. The Effect of Teflon Coating on the Resistance to Sliding of Orthodontic Archwires. Eur. J. Orthod. 2012, 34, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Husmann, P.; Bourauel, C.; Wessinger, M.; Jäger, A. The Frictional Behavior of Coated Guiding Archwires. J. Orofac. Orthop. Fortschritte Kieferorthopädie 2002, 63, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Demling, A.; Elter, C.; Heidenblut, T.; Bach, F.-W.; Hahn, A.; Schwestka-Polly, R.; Stiesch, M.; Heuer, W. Reduction of Biofilm on Orthodontic Brackets with the Use of a Polytetrafluoroethylene Coating. Eur. J. Orthod. 2010, 32, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.H.; Lim, B.S.; Kwak, E.J.; Lee, G.J.; Choi, S.; Park, K.H. Surface Ultrastructure and Mechanical Properties of Three Different White-Coated NiTi Archwires. Scanning 2015, 37, 414–421. [Google Scholar] [CrossRef]
- Elsaka, S.; Hassan, A.; Elnaghy, A. Effect of Gastric Acids on Surface Topography and Bending Properties of Esthetic Coated Nickel-Titanium Orthodontic Archwires. Clin. Oral Investig. 2021, 25, 1319–1326. [Google Scholar] [CrossRef]
- Dokku, A.; Peddu, R.; Prakash, A.S.; Padhmanabhan, J.; Kalyani, M.; Devikanth, L. Surface and Mechanical Properties of Different Coated Orthodontic Archwires. J. Indian Orthod. Soc. 2018, 52, 238–242. [Google Scholar] [CrossRef]
- Choi, S.; Park, D.-J.; Kim, K.-A.; Park, K.-H.; Park, H.-K.; Park, Y.-G. In Vitro Sliding-Driven Morphological Changes in Representative Esthetic NiTi Archwire Surfaces. Microsc. Res. Tech. 2015, 78, 926–934. [Google Scholar] [CrossRef]
- Rego, M.V.N.N.D.; Lau, G.W.T.; Araújo, Y.C.; Silva, R.M. e Color Stability of Esthetic Coatings Applied to Nickel-Titanium Archwires. Rev. Odontol. UNESP 2017, 46, 307–311. [Google Scholar] [CrossRef]
- Jejurikar, H.; Contractor, T.; Nene, S.; Kalia, A.; Patil, W.; Khan, N. A Comparison of Surface Characteristics, Coating Stability and Friction Coefficients of Esthetic Archwires: A Comparative Study. J. Indian Orthod. Soc. 2021, 55, 56–63. [Google Scholar] [CrossRef]
- Shahabi, M.; Salari, S.; Poosti, M.; Abtahi, M. Static and Kinetic Frictional Forces of Silica-Insert Ceramic Brackets with Coated Archwires in Artificial Saliva. Dent. Res. J. 2017, 14, 412. [Google Scholar] [CrossRef]
- Argalji, N.; Da Silva, E.M.; Cury-Saramago, A.; Mattos, C.T. Characterization and Coating Stability Evaluation of Nickel-Titanium Orthodontic Esthetic Wires: An in Vivo Study. Braz. Oral Res. 2017, 31, e68. [Google Scholar] [CrossRef] [PubMed]
- Abdulkhabeer, H.; Alyassiri, A.; Farhan Kamaruddin, A.; Ismail, K.; Shafiai, N.A.A.; Rahman, N.A.; Amir, W.M.; Ahmad, W. Preliminary Result of Randomised Controlled Trial of Three Different Coated Archwires Part 1: Tooth Alignment and Coating Loss. Malays. J. Med. Health Sci. 2020, 16, 2636–9346. [Google Scholar]
- Zegan, G.; Sodor, A.; Munteanu, C. Surface Characteristics of Retrieved Coated and Nickel-Titanium Orthodontic Archwires. Rom. J. Morphol. Embryol. 2012, 53, 935–939. [Google Scholar] [PubMed]
- da Silva, D.L.; Santos, E.; de Souza Camargo, S.; de Oliveira Ruellas, A.C. Infrared Spectroscopy, Nano-Mechanical Properties, and Scratch Resistance of Esthetic Orthodontic Coated Archwires. Angle Orthod. 2015, 85, 777–783. [Google Scholar] [CrossRef]
- Lin, C.; Kim, J.S.; Lin, E.T.; Lin, E.T. Prolonged Water Immersion Alters Resistance to Sliding of Aesthetic Orthodontic Coated Wires. Orthod. Craniofac. Res. 2021, 24, 111–120. [Google Scholar] [CrossRef]
- Rudawska, A.; Sarna-Boś, K.; Rudawska, A.; Olewnik-Kruszkowska, E.; Frigione, M. Biological Effects and Toxicity of Compounds Based on Cured Epoxy Resins. Polymers 2022, 14, 4915. [Google Scholar] [CrossRef]
- Raji, S.H.; Shojaei, H.; Ghorani, P.S.; Rafiei, E. Bacterial Colonization on Coated and Uncoated Orthodontic Wires: A Prospective Clinical Trial. Dent. Res. J. 2014, 11, 680–683. [Google Scholar]
- Shamohammadi, M.; Hormozi, E.; Moradinezhad, M.; Moradi, M.; Skini, M.; Rakhshan, V. Surface Topography of Plain Nickel-Titanium (NiTi), as-Received Aesthetic (Coated) NiTi, and Aesthetic NiTi Archwires Sterilized by Autoclaving or Glutaraldehyde Immersion: A Profilometry/SEM/AFM Study. Int. Orthod. 2019, 17, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, N.; Alavi, S. Load-Deflection and Surface Properties of Coated and Conventional Superelastic Orthodontic Archwires in Conventional and Metal-Insert Ceramic Brackets. Dent. Res. J. 2012, 9, 133. [Google Scholar] [CrossRef]
- Pop, S.I.; Dudescu, M.; Bratu, D.C.; Merie, V.V.; Pacurar, M. Effect of Esthetic Coating on the Load Deflection and Surface Characteristics of the NiTi Orthodontic Archwires. Rev. Chim. 2015, 66, 364–367. [Google Scholar]
- Elayyan, F.; Silikas, N.; Bearn, D. Mechanical Properties of Coated Superelastic Archwires in Conventional and Self-Ligating Orthodontic Brackets. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Dragomirescu, A.O.; Teodorescu, E.; Tarmure, V.; Baluta, A.; Pacurar, M.; Nenovici, D.; Chibelean, M.; Ionescu, E. Variation of Static Frictional Forces in the Fixed Orthodontic System. Rev. Chim. 2019, 70, 3954–3956. [Google Scholar] [CrossRef]
- Aboalnaga, A.A.; Shahawi, A.M. El Comparison of Surface Roughness and Hardness of Three Different Brands of Esthetic Coated NiTi Archwires: Invitro Study. BMC Oral Health 2023, 23, 816. [Google Scholar] [CrossRef]
- Elayyan, F.; Silikas, N.; Bearn, D. Ex Vivo Surface and Mechanical Properties of Coated Orthodontic Archwires. Eur. J. Orthod. 2008, 30, 661–667. [Google Scholar] [CrossRef]
- Ping, S.; Xue, F.; Jie He, S.; Wei, C.; Tao, W.; Wei, M. Color Schemes and Biocompatibility of Epoxy Resin/Polytetrafluorethylene Coat on the Surface of Tini Arth Wires. Int. J. Mod. Phys. B 2009, 23, 1578–1583. [Google Scholar]
- Sheiko, N.; Kékicheff, P.; Marie, P.; Schmutz, M.; Jacomine, L.; Perrin-Schmitt, F. PEEK (Polyether-Ether-Ketone)-Coated Nitinol Wire: Film Stability for Biocompatibility Applications. Appl. Surf. Sci. 2016, 389, 651–665. [Google Scholar] [CrossRef]
- Shirakawa, N.; Iwata, T.; Miyake, S.; Otuka, T.; Koizumi, S.; Kawata, T. Mechanical Properties of Orthodontic Wires Covered with a Polyether Ether Ketone Tube. Angle Orthod. 2018, 88, 442–449. [Google Scholar] [CrossRef]
- do Rego, M.V.N.N.; de Araújo, G.M.M.; Martinez, E.F.; de Sousa Lima, K.R.; Fortes, P.T.F.; Leal, L.M.P. Influence of Aesthetic Coating on the Load-Deflection Ratio of Nickel–Titanium Archwires. Braz. J. Oral Sci. 2017, 15, 293. [Google Scholar] [CrossRef]
- Zhou, A.; Makowka, S.; Warunek, S.; Chen, M.-Y.; Al-Jewair, T. Effects of Various Coating Methods on the Mechanical, Physical, and Aesthetic Properties of GUMMETAL® Archwires: In Vitro Study. Int. Orthod. 2023, 21, 100753. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L.A.; de Cabañes, A.G.; Manero, J.M.; Rúperez, E.; Gil, F.J. NiTi Superelastic Orthodontic Archwires with Polyamide Coating. J. Mater. Sci. Mater. Med. 2014, 25, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Tupinambá, R.A.; Claro, C.A.D.A.; Pereira, C.A.; Nobrega, C.J.P.; Claro, A.P.R.A. Bacterial Adhesion on Conventional and Self-Ligating Metallic Brackets after Surface Treatment with Plasma-Polymerized Hexamethyldisiloxane. Dent. Press J. Orthod. 2017, 22, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Kaizer, M.R.; Azevedo, M.S.; Ogliari, F.A.; Cenci, M.S.; Moraes, R.R. (Super)Hydrophobic Coating of Orthodontic Dental Devices and Reduction of Early Oral Biofilm Retention. Biomed. Mater. 2015, 10, 065004. [Google Scholar] [CrossRef]
- Kunimatsu, R.; Tsuka, Y.; Nakajima, K.; Sumi, K.; Yoshimi, Y.; Kado, I.; Inada, A.; Kiritoshi, Y.; Tanimoto, K. The Influence of 2-Methacryloyloxyethyl Phosphorylcholine Polymer Materials on Orthodontic Friction and Attachment of Oral Bacteria. Materials 2022, 15, 5770. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, J.; Yu, C.; Zhou, X.; Chang, L.; Liu, J.; Peng, Q. Prevention of Bacterial Biofilm Formation on Orthodontic Brackets by Non-Crosslinked Chitosan Coating. Int. J. Biol. Macromol. 2023, 251, 126283. [Google Scholar] [CrossRef]
- Kumarasinghe, L.S.; Ninan, N.; Dabare, P.R.L.; Cavallaro, A.; Doğramacı, E.J.; Rossi-Fedele, G.; Dreyer, C.; Vasilev, K.; Zilm, P. Bioactive Plasma Coatings on Orthodontic Brackets: In Vitro Metal Ion Release and Cytotoxicity. Coatings 2021, 11, 857. [Google Scholar] [CrossRef]
- Liu, X.; Peng, L.; Meng, J.; Zhu, Z.; Han, B.; Wang, S. Protein-Mediated Anti-Adhesion Surface against Oral Bacteria. Nanoscale 2018, 10, 2711–2714. [Google Scholar] [CrossRef]
- Li, M.; Tang, C.; Yu, X.; Shi, X.; Yu, H.; Yin, H.; You, M.; Chen, Q.; Ding, X. Tough Adhesion and Antifouling Poly(Vinyl Alcohol) Hydrogel Coating on the Arch Wire for Antibacterial Adhesion. Sci. China Technol. Sci. 2023, 66, 2786–2796. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, C.; Ge, Z.; Li, Z.; Chen, L.; Guo, X.; Dong, G.; Zhou, P. A Novel Antibacterial and Fluorescent Coating Composed of Polydopamine and Carbon Dots on the Surface of Orthodontic Brackets. J. Mater. Sci. Mater. Med. 2023, 34, 10. [Google Scholar] [CrossRef]
- Ahmed, R.A.; Farghali, R.A.; Alshahrani, W.A. Influence of Fluoride and/or Bovine Albumin on Electrochemical Properties of Bare and Ionic Liquid- Coated Ni47Ti49Co4 Orthodontic Archwires in Artificial Saliva Solution. Int. J. Electrochem. Sci. 2021, 16, 211230. [Google Scholar] [CrossRef]
- Xu, J.L.; Lai, T.; Luo, J.M. Preparation and Characterization of the Aesthetic Coating on Nickel-Titanium Orthodontic Archwire by Electrophoretic Deposition. Prog. Org. Coat. 2019, 137, 105271. [Google Scholar] [CrossRef]
- Lee, B.-S.; Lin, Y.-C.; Hsu, W.-C.; Hou, C.-H.; Shyue, J.-J.; Hsiao, S.-Y.; Wu, P.-J.; Lee, Y.-T.; Luo, S.-C. Engineering Antifouling and Antibacterial Stainless Steel for Orthodontic Appliances through Layer-by-Layer Deposition of Nanocomposite Coatings. ACS Appl. Bio Mater. 2020, 3, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of Hydroxyapatite for Biomedical Applications. Adv. Colloid Interface Sci. 2017, 249, 321–330. [Google Scholar] [CrossRef]
- Chen, L.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in Oral Care Products—A Review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.C.; Rong, L.J. Effect of Hydroxyapatite Coating on Nickel Release of the Porous NiTi Shape Memory Alloy Fabricated by SHS Method. Surf. Coat. Technol. 2006, 201, 1017–1021. [Google Scholar] [CrossRef]
- Kocijan, A. Electrodeposition of a Hydroxyapatite Coating on a Biocompatible NiTi Alloy. Mater. Tehnol. 2018, 52, 67–70. [Google Scholar] [CrossRef]
- Surmenev, R.A.; Ryabtseva, M.A.; Shesterikov, E.V.; Pichugin, V.F.; Peitsch, T.; Epple, M. The Release of Nickel from Nickel–Titanium (NiTi) Is Strongly Reduced by a Sub-Micrometer Thin Layer of Calcium Phosphate Deposited by Rf-Magnetron Sputtering. J. Mater. Sci. Mater. Med. 2010, 21, 1233–1239. [Google Scholar] [CrossRef]
- Dimasruhin, F.; Ichwan, M.; Nur, A.; Yuwana, M. Electrodeposition of Hydroxyapatite-SiO2 Composite Particles for Biomedical Applications. AIP Conf. Proc. 2014, 1586, 119–123. [Google Scholar]
- Kawaguchi, K.; Iijima, M.; Endo, K.; Mizoguchi, I. Electrophoretic Deposition as a New Bioactive Glass Coating Process for Orthodontic Stainless Steel. Coatings 2017, 7, 199. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Iijima, M.; Muguruma, T.; Endo, K.; Mizoguchi, I. Effects of Bioactive Glass Coating by Electrophoretic Deposition on Esthetical, Bending, and Frictional Performance of Orthodontic Stainless Steel Wire. Dent. Mater. J. 2020, 39, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Rapiejko, C.; Fouvry, S.; Grosgogeat, B.; Wendler, B. A Representative Ex-Situ Fretting Wear Investigation of Orthodontic Arch-Wire/Bracket Contacts. Wear 2009, 266, 850–858. [Google Scholar] [CrossRef]
- VDI 2840; Carbon Films—Basic Knowledge, Film Types and Properties. VDI-Rischtlinien 2012; VDI (Verein Deutscher Ingenieure): Düsseldorf, Germany, 2012.
- Aisenberg, S.; Chabot, R. Ion-Beam Deposition of Thin Films of Diamondlike Carbon. J. Appl. Phys. 1971, 42, 2953–2958. [Google Scholar] [CrossRef]
- Grill, A. Diamond-like Carbon Coatings as Biocompatible Materials—An Overview. Diam. Relat. Mater. 2003, 12, 166–170. [Google Scholar] [CrossRef]
- Hauert, R.; Thorwarth, K.; Thorwarth, G. An Overview on Diamond-like Carbon Coatings in Medical Applications. Surf. Coat. Technol. 2013, 233, 119–130. [Google Scholar] [CrossRef]
- Fedel, M. Blood Compatibility of Diamond-like Carbon (DLC) Coatings. In Diamond-Based Materials for Biomedical Applications; Narayan, R., Ed.; Woodhead Publishing Limited: Sawston, UK, 2013; pp. 71–102. ISBN 9780857093400. [Google Scholar]
- Love, C.A.; Cook, R.B.; Harvey, T.J.; Dearnley, P.A.; Wood, R.J.K. Diamond like Carbon Coatings for Potential Application in Biological Implants—A Review. Tribol. Int. 2013, 63, 141–150. [Google Scholar] [CrossRef]
- Robertson, J. Diamond-like Amorphous Carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ohgoe, Y.; Ozeki, K.; Sato, K.; Sumiya, T.; Hirakuri, K.K.; Aoki, H. Diamond-like Carbon Coatings on Orthodontic Archwires. Diam. Relat. Mater. 2005, 14, 1094–1097. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ozeki, K.; Ohgoe, Y.; Gei, L.; Hirakuri, K.K.; Aoki, H. Biocompatibility of Diamond-Like Carbon Coated NiTi Orthodontic Wire and Acrylic Resin Teeth. Key Eng. Mater. 2005, 284–286, 783–786. [Google Scholar] [CrossRef]
- Ohgoe, Y.; Hirakuri, K.K.; Ozeki, K.; Fukui, Y. Investigation of Diamond-like Carbon Coating for Orthodontic Archwire. New Diam. Front. Carbon Technol. 2007, 17, 281–288. [Google Scholar]
- Ohgoe, Y.; Kobayashi, S.; Ozeki, K.; Aoki, H.; Nakamori, H.; Hirakuri, K.K.; Miyashita, O. Reduction Effect of Nickel Ion Release on a Diamond-like Carbon Film Coated onto an Orthodontic Archwire. Thin Solid Film. 2006, 497, 218–222. [Google Scholar] [CrossRef]
- Huang, S.Y.; Huang, J.J.; Kang, T.; Diao, D.F.; Duan, Y.Z. Coating NiTi Archwires with Diamond-like Carbon Films: Reducing Fluoride-Induced Corrosion and Improving Frictional Properties. J. Mater. Sci. Mater. Med. 2013, 24, 2287–2292. [Google Scholar] [CrossRef] [PubMed]
- Muguruma, T.; Iijima, M.; Brantley, W.A.; Nakagaki, S.; Endo, K.; Mizoguchi, I. Frictional and Mechanical Properties of Diamond-like Carbon-Coated Orthodontic Brackets. Eur. J. Orthod. 2013, 35, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Akaike, S.; Kobayashi, D.; Aono, Y.; Hiratsuka, M.; Hirata, A.; Hayakawa, T.; Nakamura, Y. Relationship between Static Friction and Surface Wettability of Orthodontic Brackets Coated with Diamond-like Carbon (DLC), Fluorine- or Silicone-Doped DLC Coatings. Diam. Relat. Mater. 2016, 61, 109–114. [Google Scholar] [CrossRef]
- Muguruma, T.; Iijima, M.; Brantley, W.A.; Mizoguchi, I. Effects of a Diamond-like Carbon Coating on the Frictional Properties of Orthodontic Wires. Angle Orthod. 2011, 81, 141–148. [Google Scholar] [CrossRef]
- Akaike, S.; Hayakawa, T.; Kobayashi, D.; Aono, Y.; Hirata, A.; Hiratsuka, M.; Nakamura, Y. Reduction in Static Friction by Deposition of a Homogeneous Diamond-like Carbon (DLC) Coating on Orthodontic Brackets. Dent. Mater. J. 2015, 34, 888–895. [Google Scholar] [CrossRef]
- Muguruma, T.; Iijima, M.; Kawaguchi, M.; Mizoguchi, I. Effects of Sp2/Sp3 Ratio and Hydrogen Content on In Vitro Bending and Frictional Performance of DLC-Coated Orthodontic Stainless Steels. Coatings 2018, 8, 199. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ohgoe, Y.; Ozeki, K.; Hirakuri, K.; Aoki, H. Dissolution Effect and Cytotoxicity of Diamond-like Carbon Coatings on Orthodontic Archwires. J. Mater. Sci. Mater. Med. 2007, 18, 2263–2268. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, S.; Wang, D.; Zhou, T.; Wang, L.; Ma, J. Effects of Nanostructured, Diamondlike, Carbon Coating and Nitrocarburizing on the Frictional Properties and Biocompatibility of Orthodontic Stainless Steel Wires. Angle Orthod. 2016, 86, 782–788. [Google Scholar] [CrossRef]
- Tantiwinyupong, N.; Chintavalakorn, R.; Santiwong, P.; Khantachawana, A. Frictional and Mechanical Properties of Surface Modified Nickel-Titanium Orthodontic Archwires. Key Eng. Mater. 2019, 801, 39–43. [Google Scholar] [CrossRef]
- Kang, T.; Huang, S.-Y.; Huang, J.-J.; Li, Q.-H.; Diao, D.-F.; Duan, Y.-Z. The Effects of Diamond-Like Carbon Films on Fretting Wear Behavior of Orthodontic Archwire-Bracket Contacts. J. Nanosci. Nanotechnol. 2015, 15, 4641–4647. [Google Scholar] [CrossRef] [PubMed]
- Danisman, H.; Celebi, F.; Danisman, S.; Bicakci, A.A. Effects of Diamond-like Carbon Coating on Frictional and Mechanical Properties of Orthodontic Brackets: An in Vitro Study. APOS Trends Orthod. 2021, 12, 13. [Google Scholar] [CrossRef]
- Almaguer-Flores, A.; Olivares-Navarrete, R.; Lechuga-Bernal, A.; Ximénez-Fyvie, L.A.; Rodil, S.E. Oral Bacterial Adhesion on Amorphous Carbon Films. Diam. Relat. Mater. 2009, 18, 1179–1185. [Google Scholar] [CrossRef]
- Carvalho, I.; Rodrigues, L.; Lima, M.J.; Carvalho, S.; Cruz, S.M.A. Overview on the Antimicrobial Activity and Biocompatibility of Sputtered Carbon-Based Coatings. Processes 2021, 9, 1428. [Google Scholar] [CrossRef]
- Almaguer-Flores, A.; Olivares-Navarrete, R.; Ximénez-Fyvie, L.A.; García-Zarco, O.; Rodil, S.E. Biocompatibility and Anti-Microbial Properties of Silver Modified Amorphous Carbon Films. MRS Proc. 2009, 1244, 2. [Google Scholar] [CrossRef]
- Wei, S.; Shao, T.; Ding, P. Study of CNx Films on 316L Stainless Steel for Orthodontic Application. Diam. Relat. Mater. 2010, 19, 648–653. [Google Scholar] [CrossRef]
- Wei, S.; Shao, T.; Ding, P. Improvement of Orthodontic Friction by Coating Archwire with Carbon Nitride Film. Appl. Surf. Sci. 2011, 257, 10333–10337. [Google Scholar] [CrossRef]
- Pan, Z.; Zhou, Q.; Wang, P.; Diao, D. Robust Low Friction Performance of Graphene Sheets Embedded Carbon Films Coated Orthodontic Stainless Steel Archwires. Friction 2022, 10, 142–158. [Google Scholar] [CrossRef]
- Wang, P.; Luo, X.; Qin, J.; Pan, Z.; Zhou, K. Effect of Graphene Sheets Embedded Carbon Films on the Fretting Wear Behaviors of Orthodontic Archwire–Bracket Contacts. Nanomaterials 2022, 12, 3430. [Google Scholar] [CrossRef]
Designation | Composition (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AISI | Fe | Cr | Ni | Mn | Mo | C | P | Si | S | Other |
303 | Bal. | 17–19 | 8–10 | 2 | 0.6 | 0.15 | 0.2 | 1.0 | 0.15 | - |
304L | Bal. | 18–20 | 8–12 | 2 | - | 0.03 | 004 | 10 | 0.03 | - |
316L | Bal. | 16–18 | 1014 | 2 | 2.5 | 0.03 | 0.04 | 1.0 | 0.03 | - |
630/17-4 | Bal. | 15–17 | 3–5 | 1 | - | 0.07 | 0.04 | 1.0 | 0.04 | 4 Cu/3 Nb |
630/17-7 | Bal. | 16–18 | 6.5–7.5 | 1 | - | 0.09 | 0.04 | 1.0 | 0.04 | 0.08–1.5 Al |
SAF 2205 | Bal. | 22 | 5.5 | 2 | 3 | 0.03 | 0.03 | 1.0 | 0.02 | 0.16 N |
18–8 Plus | Bal. | 8 | 0.16 | 18 | 1 | 0.15 | 0.045 | 1.0 | 0.03 | 0.5 N |
431 | Bal. | 26 | - | - | 4 | - | - | - | - | - |
AI29 | Bal. | 29 | 0.3 | 0.5 | 4 | 0.02 | 0.035 | 0.35 | 0.01 | 0.5 Ti |
Function | Description | Agents |
---|---|---|
Tissue lubrication, repairing, and protection | Seromucous covering of the oral tissues. Barrier against irritants. Lubrication of hard and soft tissues, and prosthesis. Mastication, speech, and deglutition aid due to lubrication. Selective modulation of microbial adhesion to oral tissues. Modulation of dental plaque metabolism. Faster tissue repair. | Mucins and other proteins. |
Clearance and pH maintenance | Acids neutralization (e.g., bicarbonate buffer). Alkalinization of dental plaque’s pH through urea metabolization by its microbiome. pH modulation to prevent reaching optimal conditions for oral colonization by pathogens. | Bicarbonate, phosphate, urea, amphoteric proteins, and enzymes. |
Maintenance of dental integrity | Modulation of pathogens activity to control the progression of caries and enamel damage. Maintenance of the enamel mineralization/demineralization equilibrium. The presence of fluoride in saliva enhances mineralization and forms a fluorapatite-like coating, which is more resistant to caries than the original teeth material. | Calcium, phosphate, fluoride, and several proteins (including statherin, histatins, cystatins, and proline-rich proteins). |
Antibacterial activity | Selective action of protein-based immunological and non-immunological agents, allowing the growth of non-cariogenic microorganisms. Among other mechanisms, the non-immunological action involves the adhesion inhibition of colonizers to the oral tissues, namely by aggregation (clumping). | Immunoglobulins, enzymes, and other proteins (including glycoproteins, staherins, agglutinins, histidine-rich proteins, and proline-rich proteins). |
Digestion, taste, and smell | Besides lubricating food and tissues, saliva starts the chemical oral digestion, namely by the initial action of the α-amylase (converting complex carbohydrates into simple sugars). The hypotonicity of saliva (low sodium, glycose, bicarbonate, and urea levels) regarding plasma, which enhances the dissolution of the substances. The presence of proteins (such as gustin) is necessary to the growth of gustatory buds. | α-amylase, gustin, lipases and other proteins. |
Oral Bacteria Microbiome | |
---|---|
Saliva | Actinobacteria, Bacteroides, Firmicutes, Fusobacteria, Proteobacteria, Spirochaetes, TM7 (The Human Microbiome Consortium) |
Dental plaque | Firmicutes, Actinobacteria |
Oral mucosa | Streptococcus salivarius, Rothia mucilaginosa, Eubacterium strain FTB41 |
Oral Bacteria Related to Oral Diseases | |
Dental caries | Streptococcus, Veillonella, Actinomyces, Granulicatella, Leptotrichia, Thiomonas, Bifidobacterium, Prevotella, Lactobacillus, Propionibacterium, Pseudoramibacter, Selenomonas |
Periapical infections (periapical periodontitis, root canal infection) | Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, Actinobacteria, Olsenella uli, Prevotella baroniae, Porphyromonas endodontalis, Fusobacterium nucleatum, Tannerella forsythia, Propionibacterium propionicum, Porphyromonas gingivalis, Prevotella intermedia, Prevotella oralis, Parvimonas micra, Porphyromonas endodontalis, Fusobacterium nucleatum, Tannerella forsythia |
Periodontal diseases (gingivitis, periodontitis) | Actinomycetes, Capnocytophaga, Campylobacter, Eikenella, Fusobacterium, Prevotella, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Bacteroidetes spp., Eubacterium saphenum, Porphyromonas endodontalis, Prevotella denticola, Parvimonas micra, Peptostreptococcus spp., Filifactor alocis, Desulfobulbus spp., Dialister spp., Synergistetes |
Halitosis | Solobacterium moorei, Atopobium parvulum, Eubacterium sulci |
Category | Material | Ni-Free Substitute and Modifications |
---|---|---|
Standard appliances | Brackets. | Ni-free SS, ceramic, plastic, Ti, gold-plated or coated with other precious metals (Pd, Pt) brackets. |
Treatment utilities | Bands. SS archwires. | Gold-plated bands. No alternative currently available; development of polymeric wires in progress. |
Mechanic helpers | CoCrNi archwires. Sliding yokes, transpalatal. and lingual arches. | No alternative currently available β-Ti (TMA), plastic or inert metal (gold) coatings of wire segments. |
Miscellaneous helpers | SS ligatures. Kobayashi hooks. Coil springs. | Teflon-coated ligatures. Teflon-coated Kobayashi hooks; Ni-free brackets with hooks. Elastomeric ligatures. |
Fixed expansion appliances | SS appliances (Quad Helix). Rapid palatal expander. SS headgear. NiTi spring screws. | β-Ti (TMA) wires for Quad-Helix. Teflon-coated SS facebow. No alternative currently available. |
Removable appliances | SS components of Hawley appliances and variations. | Plastic or elastic retainers; elastic positioners or acrylic splints invisagenTM technique. |
Complex therapeutic interventions | Orthognathic surgery lag screws and plates. Distraction osteogenesis apparatus. | Resorbable polylactic-polyglycolic lag screws and plates. No alternative currently available. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fróis, A.; Santos, A.C.; Louro, C.S. Corrosion of Fixed Orthodontic Appliances: Causes, Concerns, and Mitigation Strategies. Metals 2023, 13, 1955. https://doi.org/10.3390/met13121955
Fróis A, Santos AC, Louro CS. Corrosion of Fixed Orthodontic Appliances: Causes, Concerns, and Mitigation Strategies. Metals. 2023; 13(12):1955. https://doi.org/10.3390/met13121955
Chicago/Turabian StyleFróis, António, Ana Cristina Santos, and Cristina Santos Louro. 2023. "Corrosion of Fixed Orthodontic Appliances: Causes, Concerns, and Mitigation Strategies" Metals 13, no. 12: 1955. https://doi.org/10.3390/met13121955
APA StyleFróis, A., Santos, A. C., & Louro, C. S. (2023). Corrosion of Fixed Orthodontic Appliances: Causes, Concerns, and Mitigation Strategies. Metals, 13(12), 1955. https://doi.org/10.3390/met13121955