Selective Laser Melting of Non-Weldable Nickel Superalloy: Microstructure, Cracks and Texture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder Characteristics
2.2. Sample Preparation
2.3. Characterization
2.4. Measurement of Residual Stresses
3. Results
3.1. Defects
3.2. Microstructure and Chemical Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borisov, E.V.; Popovich, V.A.; Popovich, A.A.; Sufiiarov, V.S.; Zhu, J.N.; Starikov, K.A. Selective Laser Melting of Inconel 718 under High Laser Power. Proc. Mater. Today Proc. 2019, 30, 784–788. [Google Scholar] [CrossRef]
- Ramsperger, M.; Singer, R.F.; Körner, C. Microstructure of the Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting. Metall. Mater. Trans. A 2016, 47, 1469–1480. [Google Scholar] [CrossRef]
- Gotterbarm, M.R.; Rausch, A.M.; Körner, C. Fabrication of Single Crystals through a Μ-Helix Grain Selection Process during Electron Beam Metal Additive Manufacturing. Metals 2020, 10, 313. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J. Epitaxial Growth and Stray Grain Control toward Single-Crystal Metallic Materials by Additive Manufacturing: A Review. Adv. Eng. Mater. 2023, 25, 2201917. [Google Scholar] [CrossRef]
- Popovich, V.A.; Borisov, E.V.; Heurtebise, V.; Riemslag, T.; Popovich, A.A.; Sufiiarov, V.S. Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing. In TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings; Springer International Publishing: Cham, Switzerland, 2018; pp. 85–97. [Google Scholar]
- Afkhami, S.; Dabiri, M.; Alavi, S.H.; Björk, T.; Salminen, A. Fatigue Characteristics of Steels Manufactured by Selective Laser Melting. Int. J. Fatigue 2019, 122, 72–83. [Google Scholar] [CrossRef]
- Haghdadi, N.; Whitelock, E.; Lim, B.; Chen, H.; Liao, X.; Babu, S.S.; Ringer, S.P.; Primig, S. Multimodal Γ′ Precipitation in Inconel-738 Ni-Based Superalloy during Electron-Beam Powder Bed Fusion Additive Manufacturing. J. Mater. Sci. 2020, 55, 13342–13350. [Google Scholar] [CrossRef]
- Kirka, M.M.; Fernandez-Zelaia, P.; Lee, Y.; Nandwana, P.; Yoder, S.; Acevedo, O.; Ryan, D. Mechanical Performance of a Non-Weldable Ni-Base Superalloy: Inconel 738 Fabricated by Electron Beam Melting. In Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys; Springer International Publishing: Cham, Switzerland, 2020; pp. 1075–1084. [Google Scholar]
- Lopez-Galilea, I.; Ruttert, B.; He, J.; Hammerschmidt, T.; Drautz, R.; Gault, B.; Theisen, W. Additive Manufacturing of CMSX-4 Ni-Base Superalloy by Selective Laser Melting: Influence of Processing Parameters and Heat Treatment. Addit. Manuf. 2019, 30, 100874. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, H.; Jiang, L. Control of Crystal Orientation and Continuous Growth through Inclination of Coaxial Nozzle in Laser Powder Deposition of Single-Crystal Superalloy. J. Mater. Process Technol. 2016, 230, 177–186. [Google Scholar] [CrossRef]
- Chauvet, E.; Tassin, C.; Blandin, J.-J.; Dendievel, R.; Martin, G. Producing Ni-Base Superalloys Single Crystal by Selective Electron Beam Melting. Scr. Mater. 2018, 152, 15–19. [Google Scholar] [CrossRef]
- Chauvet, E.; Kontis, P.; Jägle, E.A.; Gault, B.; Raabe, D.; Tassin, C.; Blandin, J.-J.; Dendievel, R.; Vayre, B.; Abed, S.; et al. Hot Cracking Mechanism Affecting a Non-Weldable Ni-Based Superalloy Produced by Selective Electron Beam Melting. Acta Mater. 2018, 142, 82–94. [Google Scholar] [CrossRef]
- Qiu, C.; Chen, H.; Liu, Q.; Yue, S.; Wang, H. On the Solidification Behaviour and Cracking Origin of a Nickel-Based Superalloy during Selective Laser Melting. Mater. Charact. 2019, 148, 330–344. [Google Scholar] [CrossRef]
- Li, K.; Ji, C.; Bai, S.; Jiang, B.; Pan, F. Selective Laser Melting of Magnesium Alloys: Necessity, Formability, Performance, Optimization and Applications. J. Mater. Sci. Technol. 2023, 154, 65–93. [Google Scholar] [CrossRef]
- Buhairi, M.A.; Foudzi, F.M.; Jamhari, F.I.; Sulong, A.B.; Radzuan, N.A.M.; Muhamad, N.; Mohamed, I.F.; Azman, A.H.; Harun, W.S.W.; Al-Furjan, M.S.H. Review on Volumetric Energy Density: Influence on Morphology and Mechanical Properties of Ti6Al4V Manufactured via Laser Powder Bed Fusion. Prog. Addit. Manuf. 2023, 8, 265–283. [Google Scholar] [CrossRef]
- Ortner, B. An Analytic and Generalized Formulation of the Sin2 ψ-Method. Int. J. Mater. Res. 2022, 96, 1049–1055. [Google Scholar] [CrossRef]
- Long, H.; Mao, S.; Liu, Y.; Zhang, Z.; Han, X. Microstructural and Compositional Design of Ni-Based Single Crystalline Superalloys―A Review. J. Alloys Compd. 2018, 743, 203–220. [Google Scholar] [CrossRef]
- Yu, J.; Sun, X.; Jin, T.; Zhao, N.; Guan, H.; Hu, Z. Effect of Re on Deformation and Slip Systems of a Ni Base Single-Crystal Superalloy. Mater. Sci. Eng. A 2007, 458, 39–43. [Google Scholar] [CrossRef]
- Pyczak, F.; Devrient, B.; Neuner, F.C.; Mughrabi, H. The Influence of Different Alloying Elements on the Development of the γ/Γ′ Microstructure of Nickel-Base Superalloys during High-Temperature Annealing and Deformation. Acta Mater. 2005, 53, 3879–3891. [Google Scholar] [CrossRef]
- Rae, C.M.F.; Reed, R.C. The Precipitation of Topologically Close-Packed Phases in Rhenium-Containing Superalloys. Acta Mater. 2001, 49, 4113–4125. [Google Scholar] [CrossRef]
- Yoon, K.E.; Noebe, R.D.; Seidman, D.N. Effects of Rhenium Addition on the Temporal Evolution of the Nanostructure and Chemistry of a Model Ni-Cr-Al Superalloy. I: Experimental Observations. Acta Mater. 2007, 55, 1145–1157. [Google Scholar] [CrossRef]
- Buchbender, I.; Hoff, C.; Hermsdorf, J.; Wesling, V.; Kaierle, S. Single-Crystal Height Extension by Laser Metal Deposition of CMSX-4. Procedia CIRP 2020, 94, 304–309. [Google Scholar] [CrossRef]
Element | Ni | Cr | Al | Mo | W | Co | Re | Ta | Nb | C | B |
---|---|---|---|---|---|---|---|---|---|---|---|
wt% | bal. | 4.9 | 5.9 | 1.0 | 8.5 | 9.0 | 4.0 | 4.0 | 1.6 | 0.15 | 0.02 |
Group | P, W | S, mm/s | E, J/mm3 |
---|---|---|---|
1 | 210–420 | 1400–2800 | 30 |
2 | 300–600 | 1000–2000 | 60 |
3 | 450–900 | 1000–2000 | 90 |
4 | 450–900 | 750–1500 | 120 |
5 | 450–900 | 600–1200 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starikov, K.; Polozov, I.; Borisov, E.; Kim, A.; Voevodenko, D.; Gracheva, A.; Shamshurin, A.; Popovich, A. Selective Laser Melting of Non-Weldable Nickel Superalloy: Microstructure, Cracks and Texture. Metals 2023, 13, 1886. https://doi.org/10.3390/met13111886
Starikov K, Polozov I, Borisov E, Kim A, Voevodenko D, Gracheva A, Shamshurin A, Popovich A. Selective Laser Melting of Non-Weldable Nickel Superalloy: Microstructure, Cracks and Texture. Metals. 2023; 13(11):1886. https://doi.org/10.3390/met13111886
Chicago/Turabian StyleStarikov, Kirill, Igor Polozov, Evgenii Borisov, Artem Kim, Daniil Voevodenko, Anna Gracheva, Alexey Shamshurin, and Anatoly Popovich. 2023. "Selective Laser Melting of Non-Weldable Nickel Superalloy: Microstructure, Cracks and Texture" Metals 13, no. 11: 1886. https://doi.org/10.3390/met13111886
APA StyleStarikov, K., Polozov, I., Borisov, E., Kim, A., Voevodenko, D., Gracheva, A., Shamshurin, A., & Popovich, A. (2023). Selective Laser Melting of Non-Weldable Nickel Superalloy: Microstructure, Cracks and Texture. Metals, 13(11), 1886. https://doi.org/10.3390/met13111886