The Effect of Pore Sealing in a Multilayer Si–O–Zr/Al2O3 Coating Designed to Protect Aluminium from Corrosion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aluminium Substrate
2.2. Coating/Film Deposition
2.2.1. Hybrid Sol–Gel Coating
2.2.2. Atomic Layer Deposition of the ALD Al2O3 Film
2.2.3. Multilayer TMZ/Al2O3 System
2.3. Coating Characterisation
2.3.1. Composition Characterisation
2.3.2. Surface and Cross-Section Analysis
2.3.3. Electrochemical Corrosion Testing
3. Results and Discussion
3.1. Preparation and Analysis of the TMZ Sol–Gel
3.1.1. Real-Time FTIR Analysis of the Sol–Gel TMZ Solution
→ Zr(OCH2CH2CH3)3OOCCH3C=CH2 + CH3CH2CH2OH
3.1.2. FTIR Analysis of the Sol–Gel TMZ Coating
3.2. Preparation and Analysis of the ALD Al2O3 Film
FTIR Analysis of the Ground Al and Al Coated with the Al2O3 ALD Film
3.3. Preparation and Analysis of the Multilayer TMZ/Al2O3
3.3.1. Surface and Cross-Section Analysis
3.3.2. Electrochemical Corrosion Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagans, P.L.; Haas, C.M. Chromate Conversion Coatings. In Surface Engineeringings; ASM Handbook; ASM International: Cleveland, OH, USA, 1994; Volume 5, pp. 405–411. [Google Scholar]
- Pokorny, P.; Tej, P.; Szelag, P. Chromate Conversion Coatings and Their Current Application. Metalurgija 2016, 55, 253–256. [Google Scholar]
- Zhao, J.; Xia, L.; Sehgal, A.; Lu, D.; McCreery, R.L.; Frankel, G.S. Effects of Chromate and Chromate Conversion Coatings on Corrosion of Aluminum Alloy 2024-T3. Surf. Coat. Technol. 2001, 140, 51–57. [Google Scholar] [CrossRef]
- Peltier, F.; Thierry, D. Review of Cr-Free Coatings for the Corrosion Protection of Aluminum Aerospace Alloys. Coatings 2022, 12, 518. [Google Scholar] [CrossRef]
- Gharbi, O.; Thomas, S.; Smith, C.; Birbilis, N. Chromate Replacement: What Does the Future Hold? npj Mater. Degrad. 2018, 2, 12. [Google Scholar] [CrossRef]
- ECHA. European Chemicals Agency Chromium VI Compounds—ANNEX XVII TO REACH—Conditions of Restrictions; ECHA: Helsinki, Finland, 2016. [Google Scholar]
- Twite, R.; Bierwagen, G. Review of Alternatives to Chromate for Corrosion Protection of Aluminum Aerospace Alloys. Prog. Org. Coat. 1998, 33, 91–100. [Google Scholar] [CrossRef]
- Carreira, A.F.; Pereira, A.M.; Vaz, E.P.; Cabral, A.M.; Ghidini, T.; Pigliaru, L.; Rohr, T. Alternative Corrosion Protection Pretreatments for Aluminum Alloys. J. Coat. Technol. Res. 2017, 14, 879–892. [Google Scholar] [CrossRef]
- Metroke, T.L.; Parkhill, R.L.; Knobbe, E.T. Passivation of Metal Alloys Using Sol–Gel-Derived Materials—A Review. Prog. Org. Coat. 2001, 41, 233–238. [Google Scholar] [CrossRef]
- Chou, T.P.; Chandrasekaran, C.; Cao, G.Z. Sol–Gel-Derived Hybrid Coatings for Corrosion Protection. J. Sol–Gel Sci. Technol. 2003, 26, 321–327. [Google Scholar] [CrossRef]
- Rodič, P.; Milošev, I.; Lekka, M.; Andreatta, F.; Fedrizzi, L. Corrosion Behaviour and Chemical Stability of Transparent Hybrid Sol–Gel Coatings Deposited on Aluminium in Acidic and Alkaline Solutions. Prog. Org. Coat. 2018, 124, 286–295. [Google Scholar] [CrossRef]
- Figueira, R.B. Hybrid Sol–Gel Coatings for Corrosion Mitigation: A Critical Review. Polymers 2020, 12, 689. [Google Scholar] [CrossRef]
- Castro, Y.; Aparicio, M.; Moreno, R.; Duran, A. Silica-Zirconia Alkali-Resistant Coatings by Sol–Gel Route. J. Sol–Gel Sci. Technol. 2005, 35, 41–50. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Yang, S.; Jin, J.H.; Jung, K.; Kim, J.-S.; Bae, B.-S. Fabrication of Transparent Methacrylate Zirconium Siloxane Hybrid Materials Using Sol–Gel Synthesised Oligosiloxane Resin. J. Sol–Gel Sci. Technol. 2011, 58, 114–120. [Google Scholar] [CrossRef]
- Chuah, G.K.; Liu, S.H.; Jaenicke, S.; Li, J. High Surface Area Zirconia by Digestion of Zirconium Propoxide at Different pH. Microporous Mesoporous Mater. 2000, 39, 381–392. [Google Scholar] [CrossRef]
- Rodič, P.; Iskra, J.; Milošev, I. Study of a Sol–Gel Process in the Preparation of Hybrid Coatings for Corrosion Protection Using FTIR and 1H NMR Methods. J. Non-Cryst. Solids 2014, 396–397, 25–35. [Google Scholar] [CrossRef]
- Rodič, P.; Mertelj, A.; Borovšak, M.; Benčan, A.; Mihailović, D.; Malič, B.; Milošev, I. Composition, Structure and Morphology of Hybrid Acrylate-Based Sol–Gel Coatings Containing Si and Zr Composed for Protective Applications. Surf. Coat. Technol. 2016, 286, 388–396. [Google Scholar] [CrossRef]
- Rodič, P.; Zanna, S.; Milošev, I.; Marcus, P. Degradation of Sol–Gel Acrylic Coatings Based on Si and Zr Investigated Using Electrochemical Impedance, Infrared and X-Ray Photoelectron Spectroscopies. Front. Mater. 2021, 8, 756447. [Google Scholar] [CrossRef]
- Varma, P.C.R.; Colreavy, J.; Cassidy, J.; Oubaha, M.; Duffy, B.; McDonagh, C. Effect of Organic Chelates on the Performance of Hybrid Sol–Gel Coated AA 2024-T3 Aluminium Alloys. Prog. Org. Coat. 2009, 66, 406–411. [Google Scholar] [CrossRef]
- Rodič, P.; Katić, J.; Korte, D.; Desimone, P.M.; Franko, M.; Ceré, S.M.; Metikoš-Huković, M.; Milošev, I. The Effect of Cerium Ions on the Structure, Porosity and Electrochemical Properties of Si/Zr-Based Hybrid Sol–Gel Coatings Deposited on Aluminum. Metals 2018, 8, 248. [Google Scholar] [CrossRef]
- Rodič, P.; Milošev, I. Electrochemical and Salt Spray Testing of Hybrid Coatings Based on Si and Zr Deposited on Aluminum and Its Alloys. J. Electrochem. Soc. 2015, 162, C592–C600. [Google Scholar] [CrossRef]
- Bard, A.J.; Stratmann, M.; Frankel, G.S. Encyclopedia of Electrochemistry: Volume 4: Corrosion and Oxide Films, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
- Puurunen, R.L. Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/Water Process. J. Appl. Phys. 2005, 97, 121301. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, TX, USA; Brussels, Belgium, 1974. [Google Scholar]
- Ishwara Bhat, J.; Alva, V.D.P. A Study of Aluminium Corrosion Inhibition in Acid Medium by an Antiemitic Drug. Trans. Indian Inst. Met. 2011, 64, 377–384. [Google Scholar] [CrossRef]
- Boukerche, I.; Djerad, S.; Benmansour, L.; Tifouti, L.; Saleh, K. Degradability of Aluminum in Acidic and Alkaline Solutions. Corros. Sci. 2014, 78, 343–352. [Google Scholar] [CrossRef]
- Emregül, K.C.; Aksüt, A.A. The Behavior of Aluminum in Alkaline Media. Corros. Sci. 2000, 42, 2051–2067. [Google Scholar] [CrossRef]
- Strehblow, H.-H.; Marcus, P. Mechanisms of Pitting Corrosion. In Corrosion Mechanisms in Theory and Practice, 2nd ed.; Marcus, P., Ed.; Marcel Dekker, Inc.: Basel, Switzerland, 2011; pp. 349–393. [Google Scholar]
- Natishan, P.M.; O’Grady, W.E. Chloride Ion Interactions with Oxide-Covered Aluminum Leading to Pitting Corrosion: A Review. J. Electrochem. Soc. 2014, 161, C421. [Google Scholar] [CrossRef]
- Paranjpe, A.; Gopinath, S.; Omstead, T.; Bubber, R. Atomic Layer Deposition of AlOx for Thin Film Head Gap Applications. J. Electrochem. Soc. 2001, 148, G465–G471. [Google Scholar] [CrossRef]
- Seshan, K. Handbook of Thin Film Deposition; William Andrew (Elsevier): Amsterdam, The Netherlands, 2012. [Google Scholar]
- Van Hemmen, J.L.; Heil, S.B.S.; Klootwijk, J.H.; Roozeboom, F.; Hodson, C.J.; van de Sanden, M.C.M.; Kessels, W.M.M. Plasma and Thermal ALD of Al2O3 in a Commercial 200 Mm ALD Reactor. J. Electrochem. Soc. 2007, 154, G165–G169. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A.; Guzman, L.; Fedrizzi, L. Corrosion Protection of AISI 316 Stainless Steel by ALD Alumina/Titania Nanometric Coatings. J. Coat. Technol. Res. 2011, 8, 655–659. [Google Scholar] [CrossRef]
- Ahvenniemi, E.; Akbashev, A.R.; Ali, S.; Bechelany, M.; Berdova, M.; Boyadjiev, S.; Cameron, D.C.; Chen, R.; Chubarov, M.; Cremers, V.; et al. Review Article: Recommended Reading List of Early Publications on Atomic Layer Deposition—Outcome of the “Virtual Project on the History of ALD”. J. Vac. Sci. Technol. A 2016, 35, 010801. [Google Scholar] [CrossRef]
- Spajić, I.; Rodič, P.; Šekularac, G.; Lekka, M.; Fedrizzi, L.; Milošev, I. The Effect of Surface Preparation on the Protective Properties of Al2O3 and HfO2Thin Films Deposited on Cp-Titanium by Atomic Layer Deposition. Electrochim. Acta 2021, 366, 137431. [Google Scholar] [CrossRef]
- Pehkonen, S.O.; Yuan, S. Chapter 7—The Inorganic Film Coatings for Corrosion Protection. In Interface Science and Technology; Pehkonen, S.O., Yuan, S., Eds.; Tailored Thin Coatings for Corrosion Inhibition using a Molecular Approach; Elsevier: Amsterdam, The Netherlands, 2018; Volume 23, pp. 185–255. [Google Scholar]
- Dameron, A.A.; Davidson, S.D.; Burton, B.B.; Carcia, P.F.; McLean, R.S.; George, S.M. Gas Diffusion Barriers on Polymers Using Multilayers Fabricated by Al2O3 and Rapid SiO2 Atomic Layer Deposition. J. Phys. Chem. C 2008, 112, 4573–4580. [Google Scholar] [CrossRef]
- Carcia, P.F.; McLean, R.S.; Reilly, M.H.; Groner, M.D.; George, S.M. Ca Test of Al2O3 Gas Diffusion Barriers Grown by Atomic Layer Deposition on Polymers. Appl. Phys. Lett. 2006, 89, 031915. [Google Scholar] [CrossRef]
- Oliveira, M.P.; Silva, R.M.; Yasakau, K.A.; Bastos, A.; Kallip, S.; Zheludkevich, M.L.; Silva, R.F.; Ferreira, M.G.S. Atomic Layer Deposition of Nanometric Alumina for Corrosion Protection of Heterogeneous Metallic Surfaces—The Case of Aeronautical Grade Aluminium Alloy 2024-T3. Corros. Sci. 2022, 209, 110773. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A.; Andreatta, F.; Lekka, M.; Guzman, L. Atomic Layer Deposition: State-of-the-Art and Research/Industrial Perspectives. Corros. Rev. 2011, 29, 191–208. [Google Scholar] [CrossRef]
- Matero, R.; Ritala, M.; Leskelä, M.; Salo, T.; Aromaa, J.; Forsén, O. Atomic Layer Deposited Thin Films for Corrosion Protection. J. Phys. IV 1999, 09, Pr8-493–Pr8-499. [Google Scholar] [CrossRef]
- Im, H.; Wittenberg, N.J.; Lindquist, N.C.; Oh, S.-H. Atomic Layer Deposition: A Versatile Technique for Plasmonics and Nanobiotechnology. J. Mater. Res. 2012, 27, 663–671. [Google Scholar] [CrossRef]
- King, D.M.; Spencer, J.A.; Liang, X.; Hakim, L.F.; Weimer, A.W. Atomic Layer Deposition on Particles Using a Fluidized Bed Reactor with in Situ Mass Spectrometry. Surf. Coat. Technol. 2007, 201, 9163–9171. [Google Scholar] [CrossRef]
- Groner, M.D.; Fabreguette, F.H.; Elam, J.W.; George, S.M. Low-Temperature Al2O3 Atomic Layer Deposition. Chem. Mater. 2004, 16, 639–645. [Google Scholar] [CrossRef]
- Choi, H.; Shin, S.; Jeon, H.; Choi, Y.; Kim, J.; Kim, S.; Chung, S.C.; Oh, K. Fast Spatial Atomic Layer Deposition of Al2O3 at Low Temperature (<100 °C) as a Gas Permeation Barrier for Flexible Organic Light-Emitting Diode Displays. J. Vac. Sci. Technol. A 2016, 34, 01A121. [Google Scholar] [CrossRef]
- Potts, S.E.; Schmalz, L.; Fenker, M.; Díaz, B.; Światowska, J.; Maurice, V.; Seyeux, A.; Marcus, P.; Radnóczi, G.; Tóth, L. Ultra-Thin Aluminium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Corrosion Protection. J. Electrochem. Soc. 2011, 158, C132–C138. [Google Scholar] [CrossRef]
- Díaz, B.; Härkönen, E.; Światowska, J.; Maurice, V.; Seyeux, A.; Marcus, P.; Ritala, M. Low-Temperature Atomic Layer Deposition of Al2O3 Thin Coatings for Corrosion Protection of Steel: Surface and Electrochemical Analysis. Corros. Sci. 2011, 53, 2168–2175. [Google Scholar] [CrossRef]
- Díaz, B.; Härkönen, E.; Maurice, V.; Światowska, J.; Seyeux, A.; Ritala, M.; Marcus, P. Failure Mechanism of Thin Al2O3 Coatings Grown by Atomic Layer Deposition for Corrosion Protection of Carbon Steel. Electrochim. Acta 2011, 56, 9609–9618. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A.; Paussa, L.; Guzman, L.; Fedrizzi, L. Long Term Performance of Atomic Layer Deposition Coatings for Corrosion Protection of Stainless Steel. Mater. Corros. 2015, 66, 907–914. [Google Scholar] [CrossRef]
- Abdulagatov, A.I.; Yan, Y.; Cooper, J.R.; Zhang, Y.; Gibbs, Z.M.; Cavanagh, A.S.; Yang, R.G.; Lee, Y.C.; George, S.M. Al2O3 and TiO2 Atomic Layer Deposition on Copper for Water Corrosion Resistance. ACS Appl. Mater. Interfaces 2011, 3, 4593–4601. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.L.; Wang, L.C.; Lin, H.C.; Chen, M.J.; Lin, K.M. Investigation of Defects in Ultra-Thin Al2O3 Films Deposited on Pure Copper by the Atomic Layer Deposition Technique. Appl. Surf. Sci. 2015, 359, 533–542. [Google Scholar] [CrossRef]
- Härkönen, E.; Kolev, I.; Díaz, B.; Światowska, J.; Maurice, V.; Seyeux, A.; Marcus, P.; Fenker, M.; Toth, L.; Radnoczi, G.; et al. Sealing of Hard CrN and DLC Coatings with Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2014, 6, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- Merisalu, M.; Aarik, L.; Kozlova, J.; Mändar, H.; Tarre, A.; Sammelselg, V. Effective Corrosion Protection of Aluminum Alloy AA2024-T3 with Novel Thin Nanostructured Oxide Coating. Surf. Coat. Technol. 2021, 411, 126993. [Google Scholar] [CrossRef]
- Parsons, G.N.; Atanasov, S.E.; Dandley, E.C.; Devine, C.K.; Gong, B.; Jur, J.S.; Lee, K.; Oldham, C.J.; Peng, Q.; Spagnola, J.C.; et al. Mechanisms and Reactions during Atomic Layer Deposition on Polymers. Coord. Chem. Rev. 2013, 257, 3323–3331. [Google Scholar] [CrossRef]
- Guo, H.C.; Ye, E.; Li, Z.; Han, M.-Y.; Loh, X.J. Recent Progress of Atomic Layer Deposition on Polymeric Materials. Mat. Sci. Eng. C 2017, 70, 1182–1191. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Liu, H.; Chen, Z.; Xiong, P.; Xu, X.; Chen, F.; Li, K.; Duan, Y. Effect of Various Oxidants on Reaction Mechanisms, Self-Limiting Natures and Structural Characteristics of Al2O3 Films Grown by Atomic Layer Deposition. Adv. Mater. Interfaces 2018, 5, 1701248. [Google Scholar] [CrossRef]
- Matero, R.; Rahtu, A.; Ritala, M.; Leskelä, M.; Sajavaara, T. Effect of Water Dose on the Atomic Layer Deposition Rate of Oxide Thin Films. Thin Solid Film. 2000, 368, 1–7. [Google Scholar] [CrossRef]
- Lee, D.H.; Condrate, R.A. An FTIR Spectral Investigation of the Structural Species Found on Alumina Surfaces. Mater. Lett. 1995, 23, 241–246. [Google Scholar] [CrossRef]
- Liu, C.; Shih, K.; Gao, Y.; Li, F.; Wei, L. Dechlorinating Transformation of Propachlor through Nucleophilic Substitution by Dithionite on the Surface of Alumina. J. Soils Sediments 2012, 12, 724–733. [Google Scholar] [CrossRef]
- Goldstein, D.N.; McCormick, J.A.; George, S.M. Al2O3 Atomic Layer Deposition with Trimethylaluminum and Ozone Studied by in Situ Transmission FTIR Spectroscopy and Quadrupole Mass Spectrometry. J. Phys. Chem. C 2008, 112, 19530–19539. [Google Scholar] [CrossRef]
Coating | Precursors | Preparation | Coating Deposition | Thickness |
---|---|---|---|---|
TMZ sol–gel | MAPTMS, TEOS, ZTP and MAA | Synthesis at room temperature. | Spin-coating. | 3.8 µm |
Al2O3-ALD | TMA, H2O | Deposition in vacuum at 150 °C. | Layer-by-layer deposition. | 100 nm |
Chemical Bonds | Wavenumber [cm−1] |
---|---|
Si–O–R (MAPTMS or TEOS) | 1164, 1081, 815, 785 |
Si–OH | 942 |
Si–O–Si | 1084, 1027 |
Zr–O–R (ZTP) | 1555, 1376, 1459, 1130, 1044, 1003, 890, 834 |
MAA | 1691, 1634, 1455, 1428, 1298, 1203, 810 |
ZTP/MAA | 1646, 1055, 1248, 834 |
Si–O–Zr (TMZ) | 1014, 1031, 943, 969 |
Sample | Immersion Time | |Z|10 mHz [MΩ cm2] |
---|---|---|
Ground Al | 1 h | 0.016 |
Al coated with TMZ | 1 h | 25.5 |
1 day | 15.4 | |
1 week | 6.1 | |
2 weeks | 4.1 | |
3 weeks | 2.5 | |
4 weeks | 0.54 | |
Al coated with ALD | 1 h | 80.4 |
1 day | 78.5 | |
1 week | 11.1 | |
2 weeks | 0.23 | |
Al coated TMZ+ALD | 1 h | 827.2 |
1 day | 580.9 | |
1 week | 280.2 | |
2 weeks | 124.8 | |
3 weeks | 31.9 | |
4 weeks | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodič, P.; Kapun, B.; Milošev, I. The Effect of Pore Sealing in a Multilayer Si–O–Zr/Al2O3 Coating Designed to Protect Aluminium from Corrosion. Metals 2023, 13, 1960. https://doi.org/10.3390/met13121960
Rodič P, Kapun B, Milošev I. The Effect of Pore Sealing in a Multilayer Si–O–Zr/Al2O3 Coating Designed to Protect Aluminium from Corrosion. Metals. 2023; 13(12):1960. https://doi.org/10.3390/met13121960
Chicago/Turabian StyleRodič, Peter, Barbara Kapun, and Ingrid Milošev. 2023. "The Effect of Pore Sealing in a Multilayer Si–O–Zr/Al2O3 Coating Designed to Protect Aluminium from Corrosion" Metals 13, no. 12: 1960. https://doi.org/10.3390/met13121960
APA StyleRodič, P., Kapun, B., & Milošev, I. (2023). The Effect of Pore Sealing in a Multilayer Si–O–Zr/Al2O3 Coating Designed to Protect Aluminium from Corrosion. Metals, 13(12), 1960. https://doi.org/10.3390/met13121960