Dilation Characteristics of 3D PBF-LB/M AlSi10Mg Alloy
Abstract
:1. Introduction
2. Materials and Methods
- -
- The changing characteristic of the attachment of the electromechanical strain gauge, especially at low temperatures, will increase the diameter of the cylinder of the measured part.
- -
- The changing visibility of the marks measured by the video strain gauge is due to a change in the environment, especially at low temperatures.
- -
- The mentioned modification of the dimensions is not excluded even for accredited mechanical tests; however, it must be stated that the bodies are not proportional, which is particularly important for the tensile test, which was not a relevant subject of implementation within the given experiment at the declared temperature range.
- -
- The stages of the implementation of the experiment are the specified steps of the given plan:
- -
- -
- Printing from the specified material by the declared method was discussed with the manufacturer.
- -
- Samples are generally cleaned after delivery, so no printing media traces remain on the surface. At the same time, significant burrs are checked and possibly removed.
- -
- Determination of experimental measuring infrastructures.
- -
- Planning the logistics of material and coolant (N) in the context of the measurement process and the characteristics of the equipment used.
- -
- Defining the measurement method. The measurement is controlled by a temperature profile and the recording of deformation characteristics by electromechanical and optical methods.
- -
- For each sample variant, including the conventional material, 10 pieces are produced, on which the measurement is performed.
- -
- The same measurement is performed 10 times on one identical piece for each variant to verify the constant characteristics of the material in the given temperature range.
- -
- Measured values are automatically captured through the Instron Console and BlueHill universal control measurement and communication software Instron Console ver. 10.1.
- -
- Evaluation of results from captured primary data, exported to csv format.
- -
- Implementation of results in CAE simulation examples.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdollahi, A.; Ansari, Z.; Akrami, M.; Haririan, I.; Dashti-Khavidaki, S.; Irani, M.; Kamankesh, M.; Ghobadi, E. Additive Manufacturing of an Extended-Release Tablet of Tacrolimus. Materials 2023, 16, 4927. [Google Scholar] [CrossRef]
- Gumbleton, R.; Cuenca, J.A.; Klemencic, G.M.; Jones, N.; Porch, A. Evaluating the coefficient of thermal expansion of additive manufactured AlSi10Mg using microwave techniques. Addit. Manuf. 2019, 30, 100841. [Google Scholar] [CrossRef]
- Patuelli, C.; Cestino, E.; Frulla, G.; Valente, F.; Servetti, G.; Esposito, F.; Barbero, L. FEM Simulation of AlSi10Mg Artifact for Additive Manufacturing Process Calibration with Industrial-Computed Tomography Validation. Materials 2023, 16, 4754. [Google Scholar] [CrossRef] [PubMed]
- Salmi, M. Additive Manufacturing Processes in Medical Applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef] [PubMed]
- Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive manufacturing methods and modelling approaches: A critical review. Int. J. Adv. Manuf. Technol. 2016, 83, 389–405. [Google Scholar] [CrossRef]
- Suh, Y.J.; Lim, T.H.; Choi, H.S.; Kim, M.S.; Lee, S.J.; Kim, S.H.; Park, C.H. 3D Printing and NIR Fluorescence Imaging Techniques for the Fabrication of Implants. Materials 2020, 13, 4819. [Google Scholar] [CrossRef]
- Głowacki, M.; Mazurkiewicz, A.; Słomion, M.; Skórczewska, K. Resistance of 3D-Printed Components, Test Specimens and Products to Work under Environmental Conditions—Review. Materials 2022, 15, 6162. [Google Scholar] [CrossRef] [PubMed]
- Diniță, A.; Neacșa, A.; Portoacă, A.I.; Tănase, M.; Ilinca, C.N.; Ramadan, I.N. Additive Manufacturing Post-Processing Treatments, a Review with Emphasis on Mechanical Characteristics. Materials 2023, 16, 4610. [Google Scholar] [CrossRef]
- Simchi, A.; Petzoldt, F.; Pohl, H. On the development of direct metal laser sintering for rapid tooling. J. Mater. Process. Technol. 2003, 141, 319–328. [Google Scholar] [CrossRef]
- Carpenter, K.; Tabei, A. On Residual Stress Development, Prevention, and Compensation in Metal Additive Manufacturing. Materials 2020, 13, 255. [Google Scholar] [CrossRef]
- Revilla, R.I.; Verkens, D.; Rubben, T.; De Graeve, I. Corrosion and Corrosion Protection of Additively Manufactured Aluminium Alloys—A Critical Review. Materials 2020, 13, 4804. [Google Scholar] [CrossRef]
- Liu, D.; Lee, B.; Babkin, A.; Chang, Y. Research Progress of Arc Additive Manufacture Technology. Materials 2021, 14, 1415. [Google Scholar] [CrossRef]
- Deja, M.; Zieliński, D.; Kadir, A.; Humaira, S. Applications of Additively Manufactured Tools in Abrasive Machining—A Literature Review. Materials 2021, 14, 1318. [Google Scholar] [CrossRef] [PubMed]
- Sola, A.; Sai, Y.; Trinchi, A.; Chu, C.; Shen, S.; Chen, S. How Can We Provide Additively Manufactured Parts with a Fingerprint? A Review of Tagging Strategies in Additive Manufacturing. Materials 2021, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Achillas, C.; Aidonis, D.; Iakovou, E.; Thymianidis, M.; Tzetzis, D. A methodological framework for the inclusion of modern additive manufacturing into the production portfolio of a focused factory. J. Manuf. Syst. 2015, 37, 328–339. [Google Scholar] [CrossRef]
- Contaldi, V.; Del Re, F.; Palumbo, B.; Squillace, A.; Corrado, P.; Di Petta, P. Mechanical characterisation of stainless steel parts produced by direct metal laser sintering with virgin and reused powder. Int. J. Adv. Manuf. Technol. 2019, 105, 3337–3351. [Google Scholar] [CrossRef]
- Grünberger, T.; Domröse, R. Direct Metal Laser Sintering. Laser Tech. J. 2015, 12, 45–48. [Google Scholar] [CrossRef]
- Aly, H.A.; Seleman, M.M.E.-S.; Bakkar, A.; Albaijan, I.; Ahmed, M.M.Z.; Ibrahim, K.M. Effect of Si Content on the Thermal Expansion of Ti15Mo(0–2 Si) Biomaterial Alloys during Different Heating Rates. Materials 2023, 16, 4768. [Google Scholar] [CrossRef]
- Evstifeev, A.; Volosevich, D.; Smirnov, I.; Yakupov, B.; Voropaev, A.; Vitokhin, E.; Klimova-Korsmik, O. Comparative Study of the Relationship between Microstructure and Mechanical Properties of Aluminum Alloy 5056 Fabricated by Additive Manufacturing and Rolling Techniques. Materials 2023, 16, 4327. [Google Scholar] [CrossRef]
- Bartosiak, R.; Kaźmierczyk, F.; Czapski, P. The Influence of Filament Orientation on Tensile Stiffness in 3D Printed Structures—Numerical and Experimental Studies. Materials 2023, 16, 5391. [Google Scholar] [CrossRef]
- Yang, K.K.; Zhu, J.H.; Wang, C.; Jia, D.S.; Song, L.L.; Zhang, W.H. Experimental validation of 3D printed material behaviors and their influence on the structural topology design. Comput. Mech. 2018, 61, 581–598. [Google Scholar] [CrossRef]
- Dvorakova, J.; Dvorak, K. Topological Optimization of a Component Made by the FDM Method. Int. J. Mech. Eng. Robot. Res. 2021, 10, 67–71. [Google Scholar] [CrossRef]
- Dvorak, K.; Dvorakova, J.; Zarybnicka, L.; Horak, Z. Influence of 3D Printing Topology by DMLS Method on Crack Propagation. Materials 2021, 14, 7483. [Google Scholar] [CrossRef]
- Alsalla, H.H.; Smith, C.; Hao, L. The effect of different build orientations on the consolidation, tensile and fracture toughness properties of direct metal laser sintering Ti-6Al-4V. Rapid Prototyp. J. 2018, 24, 276–284. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Seifi, M. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Res. 2016, 46, 151–186. [Google Scholar] [CrossRef]
- Razavykia, A.; Brusa, E.; Delprete, C.; Yavari, R. An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting. Materials 2020, 13, 3895. [Google Scholar] [CrossRef] [PubMed]
- Wichniarek, R. Special Issue: Bioactive Materials for Additive Manufacturing. Materials 2023, 16, 6129. [Google Scholar] [CrossRef]
- Sedlacek, F.; Kalina, T.; Stepanek, M. Optimization of Components with Topology Optimization for Direct Additive Manufacturing by DLMS. Materials 2023, 16, 5422. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.-Y. High Temperature Mechanical Properties of Al–Si–Mg–(Cu) Alloys for Automotive Cylinder Heads. Mater. Trans. 2013, 54, 588–594. [Google Scholar] [CrossRef]
- Fousová, M.; Dvorský, D.; Michalcová, A.; Vojtěch, D. Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures. Mater. Charact. 2018, 137, 119–126. [Google Scholar] [CrossRef]
- Fan, K.; Liu, X.; He, G.; Chen, H. Elevated temperature low cycle fatigue of a gravity casting Al–Si–Cu alloy used for engine cylinder heads. Mater. Sci. Eng. A 2015, 632, 127–136. [Google Scholar] [CrossRef]
- Yang, P.; Deibler, L.A.; Bradley, D.R.; Stefan, D.K.; Carroll, J.D. Microstructure evolution and thermal properties of an additively manufactured, solution treatable AlSi10Mg part. J. Mater. Res. 2018, 33, 4040–4052. [Google Scholar] [CrossRef]
- Ferguson, J.; Lopez, H.F.; Cho, K.; Kim, C.-S. Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys. Metals 2016, 6, 43. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Xue, Y.F.; Elbestawi, M.A.; Veldhuis, S.C. The Effect of Selective Laser Melting Process Parameters on the Microstructure and Mechanical Properties of Al6061 and AlSi10Mg Alloys. Materials 2019, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Malladi, A.; Karunakaran, K. DMLS–An insight for unproblematic production. Mater. Today Proc. 2021, 37, 1986–1990. [Google Scholar] [CrossRef]
- Muhammad, M.; Nezhadfar, P.; Thompson, S.; Saharan, A.; Phan, N.; Shamsaei, N. A comparative investigation on the microstructure and mechanical properties of additively manufactured aluminum alloys. Int. J. Fatigue 2021, 146, 106165. [Google Scholar] [CrossRef]
- Knoop, D.; Lutz, A.; Mais, B.; von Hehl, A. A Tailored AlSiMg Alloy for Laser Powder Bed Fusion. Metals 2020, 10, 514. [Google Scholar] [CrossRef]
- Zykova, A.; Martyushev, N.; Skeeba, V.; Zadkov, D.; Kuzkin, A. Influence of W Addition on Microstructure and Mechanical Properties of Al-12%Si Alloys. Materials 2019, 12, 981. [Google Scholar] [CrossRef]
- Nowak, M.; Bolzoni, L.; Babu, N.H. The effect of Nb–B inoculation on binary hypereutectic and near-eutectic LM13 Al–Si cast alloys. J. Alloy. Compd. 2015, 641, 22–29. [Google Scholar] [CrossRef]
- Bolzoni, L.; Nowak, M.; Babu, N.H. On the effect of Nb-based compounds on the microstructure of Al–12Si alloy. Mater. Chem. Phys. 2015, 162, 340–345. [Google Scholar] [CrossRef]
- Demirtaş, H.; Karakulak, E.; Babu, N.H. Understanding the effect of Ni content on microstructure and mechanical properties of A384 HPDC alloy. J. Alloy. Compd. 2022, 896, 163111. [Google Scholar] [CrossRef]
- ISO/ASTM 52900:2021; Additive Manufacturing General Principles Fundamentals and Vocabulary. ISO: Geneva, Switzerland, 2021.
- ASTM F3318-18; Standard for Additive Manufacturing–Finished Part Properties–Specification for AlSi10Mg with Powder Bed Fusion–Laser Beam. ASTM International: West Conshohocken, PA, USA, 2018.
- EN 1706:2020+A1:2022; Aluminium and Aluminium Alloys-Castings-Chemical Composition and Mechanical Properties. European Standard: Brussels, Belgium, 2020.
- Renishaw. AlSi10Mg-0403 Powder for Additive Manufacturing. Available online: https://www.renishaw.com/en/data-sheets-additive-manufacturing--17862 (accessed on 21 March 2023).
- Wang, H.; Guo, L.; Li, W.; Zhang, M.; Hong, Y.; Yang, W.; Zhang, Z. Influence of Design Parameters on Mechanical Behavior of Multi-Bolt, Countersunk C/SiC Composite Joint Structure. Materials 2023, 16, 6352. [Google Scholar] [CrossRef] [PubMed]
- Pezzato, L.; Gennari, C.; Franceschi, M.; Brunelli, K. Influence of silicon morphology on direct current plasma electrolytic oxidation process in AlSi10Mg alloy produced with laser powder bed fusion. Sci. Rep. 2022, 12, 14329. [Google Scholar] [CrossRef] [PubMed]
- Snopiński, P.; Woźniak, A.; Łukowiec, D.; Matus, K.; Tański, T.; Rusz, S.; Hilšer, O. Evolution of Microstructure, Texture and Corrosion Properties of Additively Manufactured AlSi10Mg Alloy Subjected to Equal Channel Angular Pressing (ECAP). Symmetry 2022, 14, 674. [Google Scholar] [CrossRef]
- Dedry, O.; Bouffioux, C.; Tran, H.S.; Macías, J.G.S.; Habraken, A.M.; Mertens, A. Identification of AlSi10Mg matrix behavior by nanoindentation. In ESAFORM 2021; PoPuPs: Liège, Belgium, 2021. [Google Scholar] [CrossRef]
- Tantideeravit, S.; Kamaya, M. An application of FEM in the determination of tensile properties for work-hardened carbon steel by means of small punch test. Results Mater. 2020, 8, 100142. [Google Scholar] [CrossRef]
- Rahmati, S.; Vahabli, E. Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results. Int. J. Adv. Manuf. Technol. 2015, 79, 823–829. [Google Scholar] [CrossRef]
- ISO 286-1:2010; Geometrical Product Specifications (GPS) ISO Code System for Tolerances on Linear Sizes Part 1: Basis of Tolerances, Deviations and Fits. ISO: Geneva, Switzerland, 2021.
- Becker, T.H.; Kumar, P.; Ramamurty, U. Fracture and fatigue in additively manufactured metals. Acta Mater. 2021, 219, 117240. [Google Scholar] [CrossRef]
- Tabatabaeian, A.; Ghasemi, A.R.; Shokrieh, M.M.; Marzbanrad, B.; Baraheni, M.; Fotouhi, M. Residual Stress in Engineering Materials: A Review. Adv. Eng. Mater. 2021, 24, 2100786. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Density | 2.68 g/cm3 |
Thermal conductivity | 30–190 W/mK |
Melting range | 570–590 °C |
Tensile strength (XY) | 442 ± 6 MPa |
Tensile strength (Z) | 417 ± 27 MPa |
Thermal expansion coefficient, declared 0–100 °C | 20.10−6 K−1 (°C−1) |
Parameters | Values |
---|---|
Production speed | 5–20 cm3/h |
Scanning speed | max. 2000 mm/s |
Positioning speed | 7000 mm/s |
Layer thickness | 20–100 μm |
Laser power | 400 W |
Parameters | Values |
---|---|
Production speed | 10 cm3/h |
Layer thickness | 60 μm |
Laser power | 400 W |
Sample | Min Diameter (μm) | Max Diameter (μm) | Perimeter (μm) |
---|---|---|---|
T0_A | 43 ± 107 | 96 ± 200 | 856 ± 156 |
T45_A | 102 ± 283 | 172 ± 472 | 1583 ± 967 |
T90_A | 42 ± 137 | 90 ± 224 | 797 ± 234 |
Cast_A | 43 ± 146 | 77 ± 243 | 747 ± 480 |
Sample | Young Modul (GPa) | Hardness (GPa) |
---|---|---|
T0_A | 103.87 ± 16.97 | 2.68 ± 0.48 |
T45_A | 85.60 ± 10.54 | 2.03 ± 0.41 |
T90_A | 75.71 ± 6.10 | 1.80 ± 0.19 |
Cast_A | 88.63 ± 17.11 | 2.21 ± 0.21 |
T0_B | 70.12 ± 6.85 | 1.74 ± 0.35 |
T45_B | 80.07 ± 4.86 | 1.79 ± 0.16 |
T90_B | 77.48 ± 5.89 | 1.99 ± 0.23 |
Cast_B | 81.22 ± 12.31 | 1.79 ± 1.17 |
Samples | Type | Negative Deformation −60 °C (%) | Maximal Deformation +60 °C (%) |
---|---|---|---|
T0 | 0° | −0.120 ± 0.02 | 0.078 ± 0.01 |
T45 | 45° | −0.109 ± 0.01 | 0.086 ± 0.01 |
T90 | 90° | −0.124 ± 0.02 | 0.075 ± 0.01 |
Cast | A sample from a cast blank | −0.123 ± 0.01 | 0.070 ± 0.01 |
Samples | Type | Thermal Expansion Coefficient −60/+60 (K−1) |
---|---|---|
T0 | 0° | 0.000198 |
T45 | 45° | 0.000199 |
T90 | 90° | 0.000195 |
The mean value of all topologies | 0°–90°–45° | 0.000197 |
Cast | Cast blank | 0.000193 |
Samples | Cast | Declared |
---|---|---|
T0 | 2.59% | 3.41% |
T45 | 1.04% | 4.88% |
T90 | 3.11% | 2.93% |
Samples | T0 | T45 | T90 | Cast | Declared |
---|---|---|---|---|---|
T0 | 0.00% | 1.54% | 0.50% | 2.59% | 3.41% |
T45 | 1.54% | 0.00% | 2.05% | 1.04% | 5.13% |
T90 | 0.50% | 2.05% | 0.00% | 3.02% | 2.93% |
Cast | 2.59% | 1.04% | 3.02% | 0.00% | 6.22% |
Declared | 3.41% | 5.13% | 2.93% | 6.22% | 0.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvorak, K.; Dvorakova, J.; Majtas, D.; Sevcik, R.; Zarybnicka, L. Dilation Characteristics of 3D PBF-LB/M AlSi10Mg Alloy. Metals 2023, 13, 1961. https://doi.org/10.3390/met13121961
Dvorak K, Dvorakova J, Majtas D, Sevcik R, Zarybnicka L. Dilation Characteristics of 3D PBF-LB/M AlSi10Mg Alloy. Metals. 2023; 13(12):1961. https://doi.org/10.3390/met13121961
Chicago/Turabian StyleDvorak, Karel, Jana Dvorakova, Dusan Majtas, Radek Sevcik, and Lucie Zarybnicka. 2023. "Dilation Characteristics of 3D PBF-LB/M AlSi10Mg Alloy" Metals 13, no. 12: 1961. https://doi.org/10.3390/met13121961
APA StyleDvorak, K., Dvorakova, J., Majtas, D., Sevcik, R., & Zarybnicka, L. (2023). Dilation Characteristics of 3D PBF-LB/M AlSi10Mg Alloy. Metals, 13(12), 1961. https://doi.org/10.3390/met13121961