Performance Evaluation of Austempered Ductile Iron Camshaft Low Alloyed with Vanadium on an Electric Spin Rig Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ductile Iron Castings
2.2. Austempering Heat Treatment
2.3. Microstructural Characterization
2.4. Mechanical Properties
Wear Test
2.5. Camshaft Bench Testing
3. Results
3.1. Ductile Irons
3.2. Austempered Ductile Irons
3.3. Wear Resistance
3.4. Bench Testing
4. Conclusions
- The vanadium addition to the DI allowed the obtaining of carbides that were partially dissolved by the applied austempering heat treatment to obtain a low volume fraction of fine carbides homogeneously distributed in the cams.
- The high-volume fraction of acicular ferrite and the low high-carbon austenite microstructure, together with the fine carbide particles, increased the wear resistance in the ADIs heat treated to 265 °C, showing the lowest volume loss of material removed by the block-on-ring wear test.
- After the OEM test protocol at low and high conditions (~60 million total cycles); no signs of wear or pitting were detected in any lobe along the camshaft; only “dark” mirror marks were observed on the lobe’s surfaces because of the oil color, the same phenomenon was presented in the roller surfaces.
- Lobe’s surfaces presented a micro expansion according to the dimensional inspection of profiles and roundness carried out previous to, and after, the spin rig test. This behavior was potentially due to contact stresses between the lobe and roller surfaces. The high load produced a strain-induced transformation of austenite to martensite. This micro-expansion was considered insignificant according to the flank closing, base circle, and flank opening results after the test and did not affect the camshaft performance in any way.
- The sample ADI-0.2V-265 fulfilled the mechanical requirements of hardness, wear resistance, and toughness in the camshaft to ensure optimal performance of the component, as was evidenced by the spin rig electric test.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foundry Products: Competitive Conditions in the U.S. Market. Available online: https://www.usitc.gov/publications/332/pub3771.pdf (accessed on 12 November 2020).
- Stefanescu, D.M.; Ruxanda, R. Lightweight iron castings-can they replace aluminum castings. In Proceedings of the 65th World Foundry Congress, Gyeongju, Republic of Korea, 20–24 October 2002. [Google Scholar]
- Samaddar, S.; Das, T.; Chowdhury, A.K.; Singh, M. Manufacturing of engineering components with austempered ductile iron—A review. Mater. Today Proc. 2018, 5, 25615–25624. [Google Scholar] [CrossRef]
- Blackmore, P.A.; Harding, R.A. The effects of metallurgical process variables on the properties of austempered ductile irons. J. Heat Treat. 1984, 3, 310–325. [Google Scholar] [CrossRef]
- Cekic, O.E.; Sidjanin, L.; Rajnovic, D.; Rajnovic, D.; Balos, S. Austempering kinetics of Cu-Ni alloyed austempered Ductile Iron. Met. Mater. Int. 2014, 20, 1131–1138. [Google Scholar] [CrossRef]
- Erfanian-Naziftoosi, H.R.; Haghdadi, N.; Kiani-Rashid, A.R. The effect of isothermal heat treatment time on the microstructure and properties of 2.11% Al austempered ductile iron. J. Mater. Eng. Perform. 2012, 21, 1785–1792. [Google Scholar] [CrossRef]
- Meena, A.; Mansori, M.E. Study of dry and minimum quantity lubrication drilling of novel austempered ductile iron (ADI) for automotive applications. Wear 2011, 271, 2412–2416. [Google Scholar] [CrossRef]
- Cetin, B.; Meco, H.; Davut, K.; Arslan, E.; Can, M. Microstructural analysis of austempered ductile iron castings. Hitt. J. Sci. Eng. 2016, 3, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Pulkrabeth, W.W. Introduction Engine components. In Engineering Fundamentals of the Internal Combustion Engine; Prentice-Hall: Upper Saddle River, NJ, USA, 2004; pp. 18–19. [Google Scholar]
- Bereteu, L.; Crâştiu, I.; Nyaguly, E.; Simoiu, D. Investigation of a camshaft repaired by welding using the vibration signal analysis. Adv. Mat. Res. 2015, 1111, 199–204. [Google Scholar] [CrossRef]
- INA-Schaeffer KG, Testing Cam Phaser Systems; Herzogenaurach, Germany. Communication, 2004.
- Hatwalane, S.; Kothavale, B. Camshaft torque analysis of diesel engine. Int. J. Curr. Eng. Tech. 2017, 7, 1–5. [Google Scholar]
- Padan, D.S. Microalloying in austempered ductile iron (ADI). AFS Proc. 2012, 12–19, 1–12. [Google Scholar]
- Sadighzadeh, B.A. Effect of alloying elements on austempered ductile iron (ADI) properties and its process: Review. China Foundry 2015, 12, 54–70. [Google Scholar]
- Arbomex Web Page. Available online: https://www.arbomex.com (accessed on 28 November 2022).
- Colin, G.E.; Cruz, R.A.; Reyes, C.G.; Téllez, R.J.; Magaña, H.A. Microstructural and mechanical assessment of camshafts produced by ductile cast iron low alloyed with vanadium. Metals 2021, 11, 146. [Google Scholar] [CrossRef]
- Colin, G.E.; Cruz, R.A.; Reyes, C.G.; Chávez, A.J.F.; Téllez, R.J.; Magaña, H.A. Heat treatment evaluation for the camshafts production of ADI low alloyed with vanadium. Metals 2021, 11, 1036. [Google Scholar] [CrossRef]
- Patel, G.; Minstry, K.; Patel, M. Experimental analysis of cam and follower of valve train system for prediction of wear rate. IJARIIE 2017, 3, 1–11. [Google Scholar]
- Pedro, D.I.; Dommarco, R.C. Rolling contact fatigue resistance of Carbidic Austempered Ductile Iron (CADI). Wear 2019, 418–419, 94–101. [Google Scholar] [CrossRef]
- Aranzabal, J.; Gutierrez, I.; Rodriguez-Ibabe, J.M.; Urcola, J.J. Influence of Heat treatments on microstructure and toughness of austempered ductile iron. Mater. Sci. Technol. 1992, 8, 263–273. [Google Scholar] [CrossRef]
- Cueva, G.; Sinatora, A.; Guesser, W.L.; Tschiptschin, A.P. Wear resistance of cast irons used in brake disc rotors. Wear 2003, 255, 1256–1260. [Google Scholar] [CrossRef] [Green Version]
- Hamid, A.A.S.; Elliot, R. Influence of austenitising temperature on austempering of an Mn-Mo-Cu alloyed ductile iron Part 1 Austempering kinetics and the processing window. Mater. Sci. Tech. 1996, 12, 1021–1031. [Google Scholar] [CrossRef]
- Rezvani, M.; Harding, R.A.; Campbell, J. The effect of vanadium in as-cast ductile iron. Int. J. Cast Metal Res. 1997, 10, 1–15. [Google Scholar] [CrossRef]
- Han, J.M.; Zou, Q.; Barber, G.C.; Nasir, T.; Northwood, D.O.; Sun, X.C.; Seaton, P. Study of the effects of austempering temperature and time on scuffing behavior of austempered Ni-Mo-Cu ductile iron. Wear 2012, 290–291, 99–105. [Google Scholar] [CrossRef]
- Putatunda, S.K.; Gadicherla, P.K. Effect of austempering time on mechanical properties of a low manganese austempered ductile iron. J. Mater. Eng. Perform. 2000, 9, 193–203. [Google Scholar] [CrossRef]
- Parhad, P.; Umale, S.; Likhite, A.; Bhatt, J. Characterization of inoculated low carbon equivalent iron at lower austempering temperature. Trans. Indian Inst. Met. 2012, 65, 449–458. [Google Scholar] [CrossRef]
- Wang, B.; Barber, G.C.; Qiu, F.; Zou, Q.; Yang, H. A review: Phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons. J. Mater. Res. Technol. 2019, 9, 1054–1069. [Google Scholar] [CrossRef]
- Bendikiene, R.; Ciuplys, A.; Cesnavicius, R.; Jutas, A.; Bahdanovich, A.; Marmysh, D.; Nasan, A.; Shemet, L.; Sherbakov, S. Influence of austempering temperatures of the microstructure and mechanical properties of austempered ductile cast iron. Metals 2021, 11, 967. [Google Scholar] [CrossRef]
- Hegde, A.; B M, G.; Hindi, J.; Sharma, S.; M C, G. Effect of austempering temperature and manganese content on the impact energy of austempered ductile iron. Cogent Eng. 2021, 8, 1939928. [Google Scholar] [CrossRef]
- Minkoff, I. The Physical Metallurgy of Cast Iron; John Wiley and Sons: Salisbury, UK, 1983; p. 183. [Google Scholar]
- Zhou, W.S.; Zhou, Q.D. Lubricated sliding and rolling wear of austempered ductile iron. Wear 1993, 162–164, 696–702. [Google Scholar] [CrossRef]
- Sellamuthu, P.; Harris Samuel, D.G.; Dinakaran, D.; Premkumar, V.P.; Li, Z.; Seetharaman, S. Austempered ductile iron (ADI): Influence of austempering temperature on microstructure, mechanical and wear properties and energy consumption. Metals 2018, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Laino, S.; Sikora, J.A.; Dommarco, R.C. Development of wear resistant carbidic austempered ductile iron. Wear 2008, 265, 1–7. [Google Scholar] [CrossRef]
- Caldera, M.; Rivera, G.; Boeri, R.; Sikora, J. Precipitation and dissolution of carbides in low alloy ductile iron plates of varied thickness. Mater Sci. Technol. 2005, 21, 1187–1191. [Google Scholar] [CrossRef]
- BabaZadeh, M.; PourAsiabi, H.; PourAsiabi, H. Wear Characteristics of ADIs; a compressive review on mechanisms and effective parameters. J. Basic Appl. Sci. Res. 2013, 3, 646–656. [Google Scholar]
- Pérez, M.J.; Cisneros, M.M.; López, H.F. Wear resistance of Cu-Ni-Mo austempered ductile iron. Wear 2006, 260, 879–885. [Google Scholar] [CrossRef]
- Balos, S.; Rajnovic, D.; Dramicanin, M.; Labus, D.; Eric-Cekic, O.; Grbovicn-Novakovic, J.; Sidjanin, L. Abrasive wear behavior of ADI material with various retained austenite content. Int. J. Cast Met. Res. 2016, 29, 187–193. [Google Scholar] [CrossRef]
- Keough, J.R.; Hayrynen, K.L. Wear properties of Austempered Ductile Irons. Appl. Process Inc. Technol. Div. USA SAE Int. 2005, 1690, 1–9. [Google Scholar]
Speed | Low Condition (500 rpm-Camshaft) (1000 rpm-Engine) | High Condition (2500 rpm-Camshaft) (5000 rpm-Engine) |
---|---|---|
Test duration | 1000 h | 300 h |
Number of cycles | ~24 million cycles | ~36 million cycles |
Change oil and oil filters | Every 300 h | Only to start the test |
Lubrication | 5W-30 | |
Load @Nose Initial Spring length 53.50 mm | 1696 N @ to 29.62 mm compress | |
Hydraulic roller lifters material | Steel–Superficial 61.5 HRC |
Sample | C | Si | Mn | P | S | Mg | V | Ni | Al | Cu | Cr | Mo | Ti | Sn | Pb | CE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DI-0.2V | 3.61 | 2.49 | 0.96 | 0.016 | 0.013 | 0.045 | 0.2 | 0.117 | 0.016 | 0.943 | 0.20 | 0.098 | 0.006 | 0.003 | 0.001 | 4.44 |
DI-0.3V | 3.58 | 2.48 | 0.94 | 0.016 | 0.012 | 0.041 | 0.3 | 0.115 | 0.016 | 0.968 | 0.13 | 0.092 | 0.006 | 0.004 | 0.001 | 4.41 |
Characteristics | DI-0.2V | DI-0.3V |
---|---|---|
Nodularity (%) | 85.26 ± 3.45 | 85.32 ± 5.36 |
Nodule count (particles/mm2) | 223 ± 31.25 | 216 ± 41.67 |
Nodule size (µm) | 25.91 ± 0.98 | 31.01 ± 2.03 |
Porosity, inclusions, and micro-shrinkages (%) | 0.69 ± 0.09 | 0.91 ± 0.16 |
Graphite (%) | 10.11 ± 1.79 | 11.21 ± 1.73 |
Ferrite (%) | 2.83 ± 0.43 | 1.21 ± 0.41 |
Pearlite (%) | 85.96 ± 3.98 | 85.74 ± 4.11 |
Carbides (%) | 0.41 ± 0.10 | 0.93 ± 0.12 |
Phases | ADI-0.2V-265 | ADI-0.2V-305 | ADI-0.3V-265 | ADI-0.3V-305 |
---|---|---|---|---|
High-carbon Austenite (%) | 9.53 | 10.93 | 8.83 | 12.93 |
Carbides (%) | 0.18 | 0.12 | 0.27 | 0.21 |
Graphite (%) | 10.11 | 10.11 | 11.21 | 11.21 |
Acicular ferrite (%) | 80.17 | 78.73 | 79.77 | 75.64 |
Mechanical Properties | DI-0.2V | DI-0.3V | ADI-0.2V-265 | ADI-0.2V-305 | ADI-0.3V-265 | ADI-0.3V-305 |
---|---|---|---|---|---|---|
Hardness (HRC) | 37.05 ± 2 | 36.54 ± 2 | 44 ± 0.7 | 43 ± 0.5 | 47 ± 0.8 | 44 ± 1.2 |
Yield strength (MPa) | 559 ± 21 | 588 ± 25 | 1032 ± 32 | 781 ± 28 | 1051 ± 22 | 999 ± 29 |
Tensile strength (MPa) | 775 ± 28 | 782 ± 26 | 1107 ± 25 | 989 ± 21 | 1200 ± 24 | 1176 ± 30 |
Elongation (%) | 4.5 ± 0.6 | 3.6 ± 0.4 | 3.04 ± 0.3 | 3.5 ± 0.3 | 3.58 ± 0.4 | 3.32 ± 0.4 |
Impact energy (J) | 14.8 ± 1.2 | 11.0 ± 1.4 | 29.08 ± 3 | 30.58 ± 3.4 | 25.88 ± 3.1 | 40.45 ± 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz Ramírez, A.; Colin García, E.; Téllez Ramírez, J.; Magaña Hernández, A. Performance Evaluation of Austempered Ductile Iron Camshaft Low Alloyed with Vanadium on an Electric Spin Rig Test. Metals 2023, 13, 198. https://doi.org/10.3390/met13020198
Cruz Ramírez A, Colin García E, Téllez Ramírez J, Magaña Hernández A. Performance Evaluation of Austempered Ductile Iron Camshaft Low Alloyed with Vanadium on an Electric Spin Rig Test. Metals. 2023; 13(2):198. https://doi.org/10.3390/met13020198
Chicago/Turabian StyleCruz Ramírez, Alejandro, Eduardo Colin García, Jaime Téllez Ramírez, and Antonio Magaña Hernández. 2023. "Performance Evaluation of Austempered Ductile Iron Camshaft Low Alloyed with Vanadium on an Electric Spin Rig Test" Metals 13, no. 2: 198. https://doi.org/10.3390/met13020198
APA StyleCruz Ramírez, A., Colin García, E., Téllez Ramírez, J., & Magaña Hernández, A. (2023). Performance Evaluation of Austempered Ductile Iron Camshaft Low Alloyed with Vanadium on an Electric Spin Rig Test. Metals, 13(2), 198. https://doi.org/10.3390/met13020198