A Novel Carbide-Free Bainitic Heavy-Haul Wheel Steel with an Excellent Wear-Resistance under Rolling-Sliding Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Steel
2.2. Microstructural Characterization
2.3. Dry Rolling–Sliding Wear Test
3. Results
3.1. Wear Resistance
3.2. The Morphology of Wear Surface
3.3. Microstructure of the Gradient Strain Layer
3.4. The Distribution of Shear Strain and Hardness
3.5. Fatigue Cracks Damage
4. Discussion
5. Conclusions
- (1)
- The novel bainitic wheel steel consists of carbide-free bainite and film-like retained austenite and exhibited outstanding mechanical properties with a high yield strength of 950 MPa and a hardness of 415 HV, which were superior to those of most of the reported typical pearlitic wheel steel.
- (2)
- During the process of wear, the surface damage of the wheel was mainly adhesive wear and fatigue damage, and the gradient strain layer (GS layer) was formed on the wheel surface. With the increasing running speed, the fatigue cracks on wheel specimens were more serious and adhesive wear lightens, and the surface morphology of the wheel turned from pitting pits to peeling.
- (3)
- As the running speed increased, the shear stress and strain of the GS layer were enhanced. The higher thickness and hardening were produced on the GS layer under higher running speed, which led to the improvement of the wear resistance of the novel bainitic wheel steel. This is the main reason for the wear rate of the bainite wheel decreasing with increasing running speed.
- (4)
- The novel bainitic wheel steel exhibited an excellent wear-resistance after rolling-sliding wear, which was much better than that of most of the reported representative pearlitic wheel steel. Thus, the novel bainitic wheel is a very promising wheel material for heavy-haul railway applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.J.; Zheng, C.L.; Lv, B.; Zhang, P.J.; Gao, G.H.; Yang, Y.Q.; Zhang, F.C. Effect of non-uniform microstructure on rolling contact fatigue performance of bainitic rail steel. Int. J. Fatigue 2022, 159, 106795. [Google Scholar] [CrossRef]
- Strey, N.F.; Rezende, A.B.; Miranda, R.D.; da Fonseca, S.T.; Mei, P.R.; Scandian, C. Comparison of rolling contact fatigue damage between railway wheels and twin-disc test specimens. Tribol. Int. 2021, 160, 107037. [Google Scholar] [CrossRef]
- Seo, J.W.; Hur, H.M.; Kwon, S.J. Effect of Mechanical Properties of Rail and Wheel on Wear and Rolling Contact Fatigue. Metals 2022, 12, 630. [Google Scholar] [CrossRef]
- Song, J.D.; Shi, L.B.; Ding, H.H.; Galas, R.; Omasta, M.; Wang, W.J.; Guo, J.; Liu, Q.Y.; Hartl, M. Effects of solid friction modifier on friction and rolling contact fatigue damage of wheel-rail surfaces. Friction 2022, 10, 597–607. [Google Scholar] [CrossRef]
- Yu, F.; Lin, F.; Tang, Y.; Zhong, C. High-speed railway to success? The effects of high-speed rail connection on regional economic development in China. J. Reg. Sci. 2019, 59, 723–742. [Google Scholar] [CrossRef]
- Jin, X.S. Research Progress of High-Speed Wheel-Rail Relationship. Lubricants 2022, 10, 248. [Google Scholar] [CrossRef]
- Bai, W.; Zhou, L.; Wang, P.F.; Hu, Y.; Wang, W.J.; Ding, H.H.; Han, Z.Y.; Xu, X.J.; Zhu, M.H. Damage behavior of heavy-haul rail steels used from the mild conditions to harsh conditions. Wear 2022, 496, 204290. [Google Scholar] [CrossRef]
- Guo, L.C.; Zhu, W.T.; Shi, L.B.; Liu, Q.Y.; Cai, Z.B.; Wang, W.J. Study on wear transition mechanism and wear map of CL60 wheel material under dry and wet conditions. Wear 2019, 426, 1771–1780. [Google Scholar] [CrossRef]
- Liu, C.P.; Liu, P.T.; Pan, J.Z.; Chen, C.H.; Ren, R.M. Effect of pre-wear on the rolling contact fatigue property of D2 wheel steel. Wear 2020, 442, 203154. [Google Scholar] [CrossRef]
- Faccoli, M.; Petrogalli, C.; Lancini, M.; Ghidini, A.; Mazzu, A. Effect of desert sand on wear and rolling contact fatigue behaviour of various railway wheel steels. Wear 2018, 396, 146–161. [Google Scholar] [CrossRef]
- Leso, T.P.; Siyasiya, C.W.; Mostert, R.J.; Moema, J. Study of rolling contact fatigue, rolling and sliding wear of class B wheel steels against R350HT and R260 rail steels under dry contact conditions using the twin disc setup. Tribol. Int. 2022, 174, 107711. [Google Scholar] [CrossRef]
- Liu, C.P.; Zhao, X.J.; Liu, P.T.; Pan, J.Z.; Ren, R.M. Influence of Rotational Speed on Subsurface Microstructure and Wear Property of D2/U71Mn Wheel-Rail Steel. Tribol. Trans. 2022, 65, 1059–1068. [Google Scholar] [CrossRef]
- Seo, J.W.; Kwon, S.J.; Jun, H.K.; Lee, C.W. Effects of Wheel Materials on Wear and Fatigue Damage Behaviors of Wheels/Rails. Tribol. Trans. 2019, 62, 635–649. [Google Scholar] [CrossRef]
- Hua, J.; Liu, P.T.; Pan, J.Z.; Zhang, G.N.; Wu, S.; Su, C.; Zhao, X.J.; Ren, R.M. Study on the effect of rotational speed on the polygonisation formation mechanism, microstructure and property evolution of D2 wheel steel. Wear 2021, 484, 204044. [Google Scholar] [CrossRef]
- Ding, H.H.; Fu, Z.K.; Wang, W.J.; Guo, J.; Liu, Q.Y.; Zhu, M.H. Investigation on the effect of rotational speed on rolling wear and damage behaviors of wheel/rail materials. Wear 2015, 330, 563–570. [Google Scholar] [CrossRef]
- Chen, S.Y.; Liu, J.H.; Guo, J.; Wang, W.J.; Liu, Q.Y. Effect of wheel material characteristics on wear and fatigue property of wheel-rail. Tribology 2015, 35, 531–537. [Google Scholar] [CrossRef]
- Li, G.; Hong, Z.Y.; Yan, Q.Z. The influence of microstructure on the rolling contact fatigue of steel for high-speed-train wheel. Wear 2015, 342, 349–355. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Liu, C.P.; Ren, R.M.; Wu, S.; Yin, H.X.; Cong, T.; Li, X. Effect of nonuniform microstructure on wear property of ER8 wheel steel. Wear 2020, 458, 203416. [Google Scholar] [CrossRef]
- Liu, J.P.; Li, Y.Q.; Zhou, Q.Y.; Zhang, Y.H.; Hu, Y.; Shi, L.B.; Wang, W.J.; Liu, F.S.; Zhou, S.B.; Tian, C.H. New insight into the dry rolling-sliding wear mechanism of carbide-free bainitic and pearlitic steel. Wear 2019, 432, 202943. [Google Scholar] [CrossRef]
- Hasan, S.M.; Chakrabarti, D.; Singh, S.B. Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels. Wear 2018, 408, 151–159. [Google Scholar] [CrossRef]
- Sharma, S.; Sangal, S.; Mondal, K. Wear behaviour of bainitic rail and wheel steels. Mater. Sci. Technol. 2016, 32, 266–274. [Google Scholar] [CrossRef]
- Rezende, A.B.; Fonseca, S.T.; Fernandes, F.M.; Miranda, R.S.; Grijalba, F.A.F.; Farina, P.F.S.; Mei, P.R. Wear behavior of bainitic and pearlitic microstructures from microalloyed railway wheel steel. Wear 2020, 456, 203377. [Google Scholar] [CrossRef]
- Miranda, R.S.; Rezende, A.B.; Fonseca, S.T.; Fernandes, F.M.; Sinatora, A.; Mei, P.R. Fatigue and wear behavior of pearlitic and bainitic microstructures with the same chemical composition and hardness using twin-disc tests. Wear 2022, 494–495, 204253. [Google Scholar] [CrossRef]
- Krolicka, A.; Lesiuk, G.; Radwa, K.; Kuziak, R.; Janik, A.; Mech, R.; Zygmunt, T. Comparison of fatigue crack growth rate: Pearlitic rail versus bainitic rail. Int. J. Fatigue 2021, 149, 106280. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, L.C.; Maiorino, M.; Liu, J.P.; Ding, H.H.; Lewis, R.; Meli, E.; Rindi, A.; Liu, Q.Y.; Wang, W.J. Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions. Wear 2020, 460. [Google Scholar] [CrossRef]
- Liu, M.; Fan, Y.S.; Gui, X.L.; Hu, J.; Wang, X.; Gao, G.H. Relationship between Microstructure and Properties of 1380 MPa Grade Bainitic Rail Steel Treated by Online Bainite-Based Quenching and Partitioning Concept. Metals 2022, 12, 330. [Google Scholar] [CrossRef]
- Das Bakshi, S.; Leiro, A.; Prakash, B.; Bhadeshia, H.K.D.H. Dry rolling/sliding wear of nanostructured bainite. Wear 2014, 316, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Gui, X.; Liu, M.; Wang, X.; Bai, B.; Gao, G. Effect of microstructure on wear and rolling contact fatigue behaviors of bainitic/martensitic rail steels. Wear 2022, 508–509, 204474. [Google Scholar] [CrossRef]
- Valizadeh Moghaddam, P.; Hardell, J.; Vuorinen, E.; Prakash, B. Dry sliding wear of nanostructured carbide-free bainitic steels—Effect of oxidation-dominated wear. Wear 2020, 454–455, 203317. [Google Scholar] [CrossRef]
- Kumar, A.; Dutta, A.; Makineni, S.K.; Herbig, M.; Petrov, R.H.; Sietsma, J. In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation. Mater. Sci. Eng. A 2019, 757, 107–116. [Google Scholar] [CrossRef]
- Caballero, F.G.; Allain, S.; Cornide, J.; Puerta Velásquez, J.D.; Garcia-Mateo, C.; Miller, M.K. Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application. Mater. Des. 2013, 49, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, Z.; Gao, G.; Zhang, X.; Kang, G.; Kan, Q. The effect of microstructure evolution on the ratchetting-fatigue interaction of carbide-free bainite rail steels under different heat-treatment conditions. Int. J. Fatigue 2022, 160, 106872. [Google Scholar] [CrossRef]
- Shipway, P.H.; Wood, S.J.; Dent, A.H. The hardness and sliding wear behaviour of a bainitic steel. Wear 1997, 203–204, 196–205. [Google Scholar] [CrossRef]
- GB/T. GB/T8601-2021; Forged and Rolled Solid Wheels for Railway. Metallurgical Industry Press: Beijing, China, 2021; pp. 1–32.
- Bodini, I.; Petrogalli, C.; Faccoli, M.; Mazzu, A. Vision-based damage analysis in shoe-braking tests on railway wheel steels. Wear 2022, 510, 204514. [Google Scholar] [CrossRef]
- Xin, Y.; Zhao, X.J.; Pan, J.Z.; Pan, R.; Ren, R.M. Influences of Microstructure on Sliding Wear Performance of D2 Wheel Steel. Tribology 2019, 39, 479. [Google Scholar] [CrossRef]
- Zeng, D.F.; Xu, T.; Liu, W.D.; Lu, L.T.; Zhang, J.W.; Gong, Y.H. Investigation on rolling contact fatigue of railway wheel steel with surface defect. Wear 2020, 446, 203207. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, T.; Xu, Z.; He, Y.; Hu, X.; Zhao, H. Excellent Wear Resistance of a High-Speed Train Brake Disc Steel with High Hardening Ratcheting Strain Zone. Metals 2021, 11, 1478. [Google Scholar] [CrossRef]
- YB/T. YB/T5345-2014; Rolling Contact Fatigue Test Method for Metal Materials. Metallurgical Industry Press: Beijing, China, 2014; pp. 1–23.
- Hardwick, C.; Lewis, R.; Eadie, D.T. Wheel and rail wear-Understanding the effects of water and grease. Wear 2014, 314, 198–204. [Google Scholar] [CrossRef]
- Leiro, A.; Vuorinen, E.; Sundin, K.G.; Prakash, B.; Sourmail, T.; Smanio, V.; Caballero, F.G.; Garcia-Mateo, C.; Elvira, R. Wear of nano-structured carbide-free bainitic steels under dry rolling-sliding conditions. Wear 2013, 298, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Chen, H.; Wang, R.Z.; Jia, Y.F.; Zhang, X.C.; Cui, Y.; Tu, S.T. Fatigue behaviors of 2205 duplex stainless steel with gradient nanostructured surface layer. Int. J. Fatigue 2021, 147, 106170. [Google Scholar] [CrossRef]
- An, L.; Sun, Y.-T.; Lu, S.-P.; Wang, Z.-B. Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 1252–1258. [Google Scholar] [CrossRef]
- Widiyarta, I.M.; Franklin, F.J.; Kapoor, A. Modelling thermal effects in ratcheting-led wear and rolling contact fatigue. Wear 2008, 265, 1325–1331. [Google Scholar] [CrossRef]
- Tyfour, W.R.; Beynon, J.H. The effect of rolling direction reversal on the wear rate and wear mechanism of pearlitic rail steel. Tribol. Int. 1994, 27, 401–412. [Google Scholar] [CrossRef]
- Vishnuvardhan, S.; Raghava, G.; Gandhi, P.; Saravanan, M.; Goyal, S.; Arora, P.; Gupta, S.K.; Bhasin, V. Ratcheting failure of pressurised straight pipes and elbows under reversed bending. Int. J. Press. Vessel. Pip. 2013, 105, 79–89. [Google Scholar] [CrossRef]
- Tyfour, W.R.; Beynon, J.H.; Kapoor, A. Deterioration of rolling contact fatigue life of pearlitic rail steel due to dry-wet rolling-sliding line contact. Wear 1996, 197, 255–265. [Google Scholar] [CrossRef]
- Su, X.; Clayton, P. Ratchetting strain experiments with a pearlitic steel under rolling/sliding contact. Wear 1997, 205, 137–143. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Alves, J.L.; Chaparro, B.M.; Menezes, L.F. Study on the influence of work-hardening modeling in springback prediction. Int. J. Plast. 2007, 23, 516–543. [Google Scholar] [CrossRef] [Green Version]
- Rycerz, P.; Olver, A.; Kadiric, A. Propagation of surface initiated rolling contact fatigue cracks in bearing steel. Int. J. Fatigue 2017, 97, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhou, L.; Ding, H.H.; Tan, G.X.; Lewis, R.; Liu, Q.Y.; Guo, J.; Wang, W.J. Investigation on wear and rolling contact fatigue of wheel-rail materials under various wheel/rail hardness ratio and creepage conditions. Tribol. Int. 2020, 143, 106091. [Google Scholar] [CrossRef]
- Rong, K.-J.; Xiao, Y.-L.; Shen, M.-X.; Zhao, H.-P.; Wang, W.-J.; Xiong, G.-Y. Influence of ambient humidity on the adhesion and damage behavior of wheel–rail interface under hot weather condition. Wear 2021, 486–487, 204091. [Google Scholar] [CrossRef]
- Wu, B.B.; Wang, X.L.; Wang, Z.Q.; Zhao, J.X.; Jin, Y.H.; Wang, C.S.; Shang, C.J.; Misra, R.D.K. New insights from crystallography into the effect of refining prior austenite grain size on transformation phenomenon and consequent mechanical properties of ultra-high strength low alloy steel. Mater. Sci. Eng. A 2019, 745, 126–136. [Google Scholar] [CrossRef]
- Hall, E. Variation of hardness of metals with grain size. Nature 1954, 173, 948–949. [Google Scholar] [CrossRef]
- Ghatrehsamani, S.; Akbarzadeh, S.; Khonsari, M.M. Relationship between subsurface stress and wear particle size in sliding contacts during running-in. Mech. Res. Commun. 2022, 123, 103891. [Google Scholar] [CrossRef]
- Ma, L.; He, C.G.; Zhao, X.J.; Guo, J.; Zhu, Y.; Wang, W.J.; Liu, Q.Y.; Jin, X.S. Study on wear and rolling contact fatigue behaviors of wheel/rail materials under different slip ratio conditions. Wear 2016, 366–367, 13–26. [Google Scholar] [CrossRef]
- Ueda, M.; Matsuda, K. Effects of carbon content and hardness on rolling contact fatigue resistance in heavily loaded pearlitic rail steels. Wear 2020, 444, 203120. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | Cu | V |
---|---|---|---|---|---|---|---|
0.22~0.24 | 1.53~1.55 | 2.04~2.06 | 0.04~0.06 | 0.38~0.40 | 0.34~0.36 | 0.26~0.30 | 0.06~0.08 |
Yield Strength/MPa | Tensile Strength/MPa | Elongation/% | Microhardness/HV |
---|---|---|---|
960 ± 15 | 1050 ± 20 | 18 ± 2 | 415 ± 10 |
Material | C | Si | Mn | Hardness/HV | Yield Strength/MPa | Ref. |
---|---|---|---|---|---|---|
1. CL60 | 0.55~0.65 | 0.17~0.37 | 0.50~0.80 | 277 | 580 | [34] |
2. CL65 | 0.57~0.67 | ≤1.00 | ≤1.20 | 302 | 620 | [34] |
3. CL70 | 0.67~0.77 | ≤1.00 | ≤1.20 | 321 | 650 | [34] |
4. Class B | 0.65 | 0.63 | 0.26 | 330 | 642 | [35] |
5. Class B+ | 0.63 | 0.84 | 0.88 | 340 | 690 | [35] |
6. ER7 | 0.51 | 0.78 | 0.38 | 295 | 568 | [35] |
7. ER8 | 0.52 | 0.26 | 0.73 | 285 | 610 | [36] |
8. D2 | 0.50~0.56 | 0.90~1.10 | 0.90~1.10 | 270 | 570 | [37] |
Running Speed/km·h−1 | Rotational Speed/r·min−1 | Vertical Load/N | Slip Rate/% | Number of Cycles |
---|---|---|---|---|
80 | 546 | 3035 | 10 | 30,000 |
120 | 740 | 3035 | 10 | 30,000 |
150 | 950 | 3035 | 10 | 30,000 |
Material | C | Si | Mn | Cr | Mo | V | SWR/mm3∙m−1∙N−1 | Ref. |
---|---|---|---|---|---|---|---|---|
Test steel | 0.22~0.24 | 1.53~1.55 | 2.04~2.06 | 0.04~0.06 | 0.34~0.36 | 0.06~0.08 | 1.01 × 10−5 | Present work |
PW-1 | ≤0.60 | ≤40 | ≤0.80 | - | - | - | 3.32 × 10−5 | [15] |
PW-2 | 0.71 | 0.43 | 0.84 | 0.27 | - | - | 1.36 × 10−5 | [25] |
ER7 | ≤0.48 | ≤0.40 | ≤0.75 | - | - | - | 1.95 × 10−5 | [51] |
CL60 | 0.55~0.65 | 0.17~0.37 | 0.50~0.80 | - | - | - | 1.67 × 10−5 | [51] |
B-Wheel | 0.71 | 0.43 | 0.84 | 0.27 | - | - | 1.09 × 10−5 | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Xu, H.; Ma, X.; Xu, Z.; Zhao, H.; He, Y. A Novel Carbide-Free Bainitic Heavy-Haul Wheel Steel with an Excellent Wear-Resistance under Rolling-Sliding Condition. Metals 2023, 13, 202. https://doi.org/10.3390/met13020202
Zhou T, Xu H, Ma X, Xu Z, Zhao H, He Y. A Novel Carbide-Free Bainitic Heavy-Haul Wheel Steel with an Excellent Wear-Resistance under Rolling-Sliding Condition. Metals. 2023; 13(2):202. https://doi.org/10.3390/met13020202
Chicago/Turabian StyleZhou, Tingwei, Haifeng Xu, Xinyuan Ma, Zhenlin Xu, Hai Zhao, and Yizhu He. 2023. "A Novel Carbide-Free Bainitic Heavy-Haul Wheel Steel with an Excellent Wear-Resistance under Rolling-Sliding Condition" Metals 13, no. 2: 202. https://doi.org/10.3390/met13020202
APA StyleZhou, T., Xu, H., Ma, X., Xu, Z., Zhao, H., & He, Y. (2023). A Novel Carbide-Free Bainitic Heavy-Haul Wheel Steel with an Excellent Wear-Resistance under Rolling-Sliding Condition. Metals, 13(2), 202. https://doi.org/10.3390/met13020202