Analysis of Cold Composite Sheet Rolling Considering Anisotropic Effect and Position-Dependent Friction Model
Abstract
:1. Introduction
2. Mathematical Model Formulation
- The cold-rolling process is plane-strain.
- The roll is a rigid body.
- The vertical stress and the horizontal stress are considered as principal stresses.
- The friction coefficient between the titanium and roll, aluminum and roll and between titanium and aluminum varies with position at the rolling deformation zone.
- Both Ti and Al layers satisfy the modified von Mises’ criterion considering anisotropy given by ( is the stress factor defined later in this article).
2.1. Region I ()
2.2. Region II ()
2.3. Region III ()
2.4. Region IV ()
2.5. Definition of the Coefficient of Friction
2.6. Solving for Stresses in Each Region
2.7. Determination of the Anisotropic Yielding Criterion and Parameters for Each Layer
3. Results and Discussion
3.1. Verification of Model Reliability
3.2. Effect of Total Reduction
3.3. Effect of Initial Aluminum Strength
3.4. Effect of the Coefficient of Friction between Titanium and Aluminum
3.5. Effect of Initial Thickness of Aluminum Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Nomenclature | |||
Thickness of the composite sheet before rolling | Principal stresses in axial directions | ||
Thickness of Ti layer before rolling | Vertical pressure | ||
Thickness of Al layer before rolling | Horizontal tensile stress of Ti layer | ||
Thickness of the composite sheet after rolling | Horizontal tensile stress of Al layer | ||
Thickness of the Ti layer after rolling | Horizontal tensile stress of composite sheet as a whole | ||
Thickness of the Al layer after rolling | Friction stress between the upper roll and Ti layer | ||
Height of upper element with respect to horizontal axis | Friction stress between the lower roll and Al layer | ||
Height of upper element with respect to horizontal axis | Friction stress between the Ti and Al layers | ||
Height of element as a whole with respect to horizontal axis | Pressure of the upper roll on Ti layer | ||
Radius of the rolls | Pressure of the lower roll on Al layer | ||
Angular velocity of rolls | Pressure on the contacting surfaces of Ti and Al layers | ||
Contact arc length | Starting point of the yielding of the Ti layer | ||
Variable contact angle of upper roll | The point at which extrusion of fresh metal from the faying surfaces comes into contact (i.e., the bonding point) | ||
The tilt angle of the contacting sides of Ti and Al layers | The point where the velocity direction of the composite sheet changes (i.e., the neutral point) | ||
Variable contact angle of lower roll | Stress factor |
References
- Xiao, H.; Qi, Z.C.; Yu, C.; Xu, C. Preparation and properties for Ti/Al clad plates generated by differential temperature rolling. J. Mater. Process. Tech. 2017, 249, 285–290. [Google Scholar] [CrossRef]
- Li, J.S.; Wang, S.Z.; Mao, Q.Z.; Huang, Z.W.; Li, Y.S. Soft/hard copper/bronze laminates with superior mechanical properties. Mater. Sci. Eng. A 2019, 756, 213–218. [Google Scholar] [CrossRef]
- Poddar, V.S.; Rathod, M.J. Evaluation of mechanical properties of cold roll bonded mild steel and aluminum. Mater. Today Proc. 2021, 43, 1–9. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, K.S.; Han, S.H.; Hong, S.I. Interface strengthening of a roll-bonded two-ply Al/Cu sheet by short annealing. Mater. Charact. 2021, 174, 111021. [Google Scholar] [CrossRef]
- Vaseghi, M.; Zand, H.; Sameezadeh, M. Mechanical bonding in cold roll-cladding of tri-layered brass/steel/brass composite. Int. J. Mater. Res. 2020, 111, 826–832. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Liu, G.P.; Li, C.W.; Wang, Q.D.; Jiang, H.Y.; Ding, W.J.; Su, F.L.; Shang, Z.P. Characteristic investigation of trilayered Cu/Al8011/Al1060 composite: Interface morphology, microstructure, and in-situ tensile deformation. Prog. Nat. Sci. 2021, 31, 679–687. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Liu, G.P.; Li, C.W.; Wang, Q.D.; Jiang, H.Y.; Ding, W.J.; Su, F.L. Experimental and numerical analysis of Cu/Al8011/Al1060 trilayered composite: A comprehensive study. J. Mater. Res. Technol. 2020, 9, 14695–14707. [Google Scholar] [CrossRef]
- Khaledi, K.; Brepols, T.; Reese, S. A multiscale description of bond formation in cold roll bonding considering periodic cracking of thin surface films. Mech. Mater. 2019, 137, 103142. [Google Scholar] [CrossRef]
- Rezaiia, A.; Shafieib, E.; Ostovan, F. Experimental & theoretical investigation of roll bonding process of multilayer strips by finite element method. J. Manuf. Process. 2020, 54, 54–69. [Google Scholar]
- Khaledi, K.; Rezaei, S.; Wulfinghoff, S.; Reese, S. Modeling of joining by plastic deformation using a bonding interface finite element. Int. J. Solids Struct. 2019, 160, 68–79. [Google Scholar] [CrossRef]
- Zhang, R.H.; Liu, J.H.; He, C.H.; Zhao, H.L.; Wang, Q.L. Test and simulation study of the effect of transverse impact stress on the rosette 19-hole gun propellant under low temperature. FirePhysChem 2022, 2, 147–153. [Google Scholar] [CrossRef]
- Haghighat, H.; Saadati, P. An upper bound analysis of rolling process of non-bonded sandwich sheets. Trans. Nonferrous Met. Soc. China 2015, 25, 1605–1613. [Google Scholar] [CrossRef]
- Maleki, H.; Bagherzadeh, S.; Mollaei-Dariani, B.; Abrinia, K. Analysis of Bonding Behavior and Critical Reduction of Two-Layer Strips in Clad Cold Rolling Process. J. Mater. Eng. Perform. 2013, 22, 917–925. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Nazari Tiji, S.A.; Djavanroodi, F. Upper bound solution of equal channel forward extrusion process as a new severe plastic deformation method. Metall. Res. Technol. 2015, 112, 609. [Google Scholar] [CrossRef]
- Hwang, Y.M.; Hsu, H.H.; Hwang, Y.L. Analytical and experimental study on bonding behavior at the roll gap during complex rolling of sandwich sheet. Int. J. Mech. Sci. 2000, 42, 2417–2437. [Google Scholar] [CrossRef]
- Dobronosov, Y.K.; Gavrish, P.A. Investigation of the stress-strain and kinematic state of metal in rolling welded joints between copper and steel. Weld. Int. 2017, 31, 874–878. [Google Scholar] [CrossRef]
- Salikhyanov, D. Contact mechanism between dissimilar materials under plastic deformation. CR Mec. 2019, 347, 588–600. [Google Scholar] [CrossRef]
- Parvizi, A.; Afrouz, F. Slab analysis of asymmetrical clad sheet bonded before rolling process. Int. J. Adv. Manuf. Tech. 2016, 87, 137–150. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, X.; Sun, J.; Wang, Z.H.; Zhao, D.W.; Zhang, D.H. Analysis of sandwich rolling with two different thicknesses outer layers based on slab method. Int. J. Mech. Sci. 2016, 106, 194–208. [Google Scholar] [CrossRef]
- Chaudhari, G.P.; Acoff, V. Cold roll bonding of multi-layered bi-metal laminate composites. Compos. Sci. Technol. 2009, 69, 1667–1675. [Google Scholar] [CrossRef]
- Tzou, G.Y. Theoretical study on the cold sandwich sheet rolling considering Coulomb friction. J. Mater. Process. Tech. 2001, 114, 41–50. [Google Scholar] [CrossRef]
- Pan, S.C.; Huang, M.N.; Tzou, G.Y.; Syu, S.W. Analysis of asymmetrical cold and hot bond rolling of unbounded clad sheet under constant shear friction. J. Mater. Process. Tech. 2006, 177, 114–120. [Google Scholar]
- Huang, M.N.; Tzou, G.Y.; Syu, S.W. Investigation on comparisons between two analytical models of sandwich sheet rolling bonded before rolling. J. Mater. Process. Tech. 2003, 140, 598–603. [Google Scholar] [CrossRef]
- Yang, W. An Investigation of Bonding Mechanism in Metal Cladding by Warm Rolling; Texas A&M University Press: College Station, TX, USA, 2011. [Google Scholar]
- Hill, R. The Mathematical Theory of Plasticity. Oxford University Press: Oxford, UK, 1998.
- Miyajima, Y.; Iguchi, K.; Onaka, S.; Kato, M. Effects of Rolling Reduction and Strength of Composed Layers on Bond Strength of Pure Copper and Aluminium Alloy Clad Sheets Fabricated by Cold Roll Bonding. Adv. Mater. Sci. Eng. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vaidyanath, L.R.; Milner, D.R. Significance of surface preparation in cold pressure welding. Br. Weld. J. 1960, 7, 1–6. [Google Scholar]
- Zhang, W.; Bay, N. Cold welding-fractographic investigation of the weld formation. Weld. Res. Suppl. 1997, 9, 361s–366s. [Google Scholar]
Plastic Anisotropy Coefficient | Al ① | Al ② | Al ③ | Ti |
---|---|---|---|---|
M | 0.44 | 0.57 | 0.63 | 1.96 |
T | 0.53 | 0.60 | 0.57 | 4.12 |
Roll Radius (R) | V | Yield Stress of Aluminum in Rolling Direction | Yield Stress of Aluminum in Transverse Direction | |||||
---|---|---|---|---|---|---|---|---|
0.2 | 0.3 | 0.2 | 135 mm | 0.6 mm | 1.1 | 0.2 mm | 43.6 MPa | 43.6 MPa |
0.4 | 1.2 mm | 0.4 mm | 98.0 MPa | 94.0 MPa | ||||
0.6 | 1.8 mm | 0.6 mm | 279.0 MPa | 258.0 MPa |
Roll Radius (R) | V | Rolling Reduction | |||||
---|---|---|---|---|---|---|---|
0.2 | 0.3 | 0.4 | 135 mm | 1.2 mm | 1.1 | 0.2 mm | 35%, 42%, 50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wu, J.; Liu, Q.; Ji, S.; Zheng, X.; Wang, F.; Wang, J. Analysis of Cold Composite Sheet Rolling Considering Anisotropic Effect and Position-Dependent Friction Model. Metals 2023, 13, 259. https://doi.org/10.3390/met13020259
Liu J, Wu J, Liu Q, Ji S, Zheng X, Wang F, Wang J. Analysis of Cold Composite Sheet Rolling Considering Anisotropic Effect and Position-Dependent Friction Model. Metals. 2023; 13(2):259. https://doi.org/10.3390/met13020259
Chicago/Turabian StyleLiu, Jiageng, Jiang Wu, Qian Liu, Shuai Ji, Xinlu Zheng, Feng Wang, and Jiang Wang. 2023. "Analysis of Cold Composite Sheet Rolling Considering Anisotropic Effect and Position-Dependent Friction Model" Metals 13, no. 2: 259. https://doi.org/10.3390/met13020259
APA StyleLiu, J., Wu, J., Liu, Q., Ji, S., Zheng, X., Wang, F., & Wang, J. (2023). Analysis of Cold Composite Sheet Rolling Considering Anisotropic Effect and Position-Dependent Friction Model. Metals, 13(2), 259. https://doi.org/10.3390/met13020259