Effect of Boron Addition on the Oxide Scales Formed on 254SMO Super Austenitic Stainless Steels in High-Temperature Air
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material Preparation
2.2. Calculation Method
3. Results and Discussion
3.1. Analysis of Initial Oxidation Process
3.2. Analysis of Oxidation Cross-Section
3.3. Diffusion Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.C.; Li, H.B.; Jiang, Z.H.; Li, Z.X.; Wu, J.X.; Zhang, B.B.; Duan, F.; Feng, H.; Zhu, H.C. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2020, 42, 143–155. [Google Scholar] [CrossRef]
- Muller, C.; Chumbley, L.S. Fracture toughness of heat–treated super austenitic stainless steels. J. Mater. Eng. Perform. 2010, 19, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Qiao, G.J.; Sun, Y.; Zou, D.N. Modeling the constitutive relationship of Cr20Ni25Mo4Cu super austenitic stainless steel during elevated temperature. Mater. Sci. Eng. A 2012, 539, 61–67. [Google Scholar] [CrossRef]
- Xing, J.; Liu, C.Z.; Li, A.M.; Wang, S.M.; Zhang, X.J.; Shi, Y.X. Microstructural evolution and stability of coarse–grained S31254 super austenitic stainless steel during hot deformation. Metals 2022, 12, 1319. [Google Scholar] [CrossRef]
- Li, S.; Ma, J.Y.; Wang, J.; Fan, G.W.; Li, H.B.; Jiang, Z.H.; Han, P.D.; Liang, W. Impact of boron addition on the hot deformation behavior and microstructure evolution of S31254. Mater. Lett. 2022, 315, 131971. [Google Scholar] [CrossRef]
- Zhang, S.C.; Yu, J.T.; Li, H.B.; Jiang, Z.H.; Geng, Y.F.; Feng, H.; Zhang, B.B.; Zhu, H.C. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 102, 105–114. [Google Scholar] [CrossRef]
- Peters, K.R.; Whittle, D.P.; Stringer, J. Oxidation and hot corrosion of nickel–based alloys containing molybdenum. Corros Sci. 1976, 16, 791–804. [Google Scholar] [CrossRef]
- Qin, L.; Pei, Y.L.; Li, S.S.; Zhao, X.B.; Gong, S.K.; Xu, H.B. Role of volatilization of molybdenum oxides during the cyclic oxidation of high–Mo containing Ni–based single crystal superalloys. Corros Sci. 2017, 129, 192–204. [Google Scholar] [CrossRef]
- Stringer, J. The reactive element effect in high–temperature corrosion. Mater. Sci. Eng. A 1989, 120, 129–137. [Google Scholar] [CrossRef]
- Babic, V.; Geers, C.; Panas, I. Reactive element effects in high–temperature alloys disentangled. Oxid. Met. 2020, 93, 229–245. [Google Scholar] [CrossRef]
- Zhang, S.C.; Li, H.B.; Jiang, Z.H.; Feng, H.; Wen, Z.J.; Ren, J.Y.; Han, P.D. Unveiling the mechanism of yttrium signifificantly improving high–temperature oxidation resistance of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 115, 103–114. [Google Scholar] [CrossRef]
- Suwattananont, N.; Petrova, R.S. Oxidation kinetics of boronized low carbon steel AISI 1018. Oxid. Met. 2008, 70, 307–315. [Google Scholar] [CrossRef]
- Binder, W.O.; Weisert, E.D. Some notes on the oxidation resistance of boron–containing alloys. Corros.–Natl. Assoc. Corros. Eng. 1953, 9, 329–332. [Google Scholar]
- Barrett, C.A.; Miner, R.V.; Hull, D.R. The effects of Cr, Al, Ti, Mo, W, Ta, and Cb on the cyclic oxidation behavior of cast Ni–base superalloys at 1100 and 1150 °C. Oxid. Met. 1983, 20, 255–278. [Google Scholar] [CrossRef]
- Xu, P.P.; Ma, J.Y.; Jiang, Z.H.; Zhang, Y.; Liang, C.X.; Dong, N.; Han, P.D. Effects of B segregation on Mo–rich phase precipitation in S31254 super austenitic stainless steels: Experimental and first–principles study. Chin. Phys. B 2022, 31, 116402. [Google Scholar] [CrossRef]
- Yu, J.T.; Zhang, S.C.; Li, H.B.; Jiang, Z.H.; Feng, H.; Xu, P.P.; Han, P.D. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 112, 184–194. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.J.; Sun, Y.H.; Zhao, A.M.; Zhang, W.; Li, J.M.; Dong, H.B.; Chou, K. The influence of Ce micro–alloying on the precipitation of intermetallic sigma phase during solidification of super austenitic stainless steels. J. Alloys Compd. 2020, 815, 152418. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Zeng, L.; Liang, J.H.; Xiao, J.; Zhao, A.M. Segregation behavior and precipitated phases of super austenitic stainless steel influenced by electromagnetic stirring. Mater. Today Commun. 2022, 31, 103675. [Google Scholar] [CrossRef]
- Hu, X.L.; Zhao, R.X.; Deng, J.G.; Hu, Y.M.; Song, Q.G. Effect of P impurity on mechanical properties of NiAl Σ5 grain boundary: From perspectives of stress and energy. Chin. Phys. B 2018, 27, 037105. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open–shell transition metals. Phys. Rev. B 1993, 48, 13115–13118. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics simulation of the liquid–metal amorphous semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Peng, P.; Zhuang, H.L.; Zhou, D.W. First–principle investigation of bismuth segregation at Σ5(012) grain boundaries in nickel. Trans. Nonferrous Met. Soc. China 2006, 16, 813–819. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blöchl, P.E. Projector augmented–wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivan, L.J.; Yoshinori, S.; Yoshitaka, U.; Yoshikazu, T. Adsorption enhancement of a fatty acid on iron surface with Σ3(111) grain boundary. Appl. Surf. Sci. 2021, 543, 148604. [Google Scholar]
- Liu, X.Y.; Zhang, H.; Cheng, X.L. Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations. Chin. Phys. B 2018, 27, 063103. [Google Scholar] [CrossRef]
- Qurashi, M.S.; Cui, Y.S.; Wang, J.; Dong, N.; Bai, J.G.; Wu, Y.C.; Han, P.D. Corrosion resistance and passivation behavior of B–containing S31254 stainless steel in a low pH medium. Int. J. Electrochem. Sci. 2019, 14, 10642–10656. [Google Scholar] [CrossRef]
- Li, H.B.; Zhang, B.B.; Jiang, Z.H.; Zhang, S.C.; Feng, H.; Han, P.D.; Dong, N.; Zhang, W.; Li, G.P.; Fan, G.W.; et al. A new insight into high–temperature oxidation mechanism of super austenitic stainless steel S32654 in air. J. Alloys Compd. 2016, 686, 326–338. [Google Scholar] [CrossRef]
- Jackson, B.; Nave, S. The dissociative chemisorption of methane on Ni(100): Reaction path description of mode–selective chemistry. J. Chem. Phys. 2011, 135, 114701. [Google Scholar] [CrossRef]
- Wang, J.; Misra, A.; Hirth, J.P. Shear response of Σ3{112} twin boundaries in face–centered–cubic metals. Phys. Rev. B 2011, 83, 064106. [Google Scholar] [CrossRef]
- Bentria, E.T.; Lefkaier, I.K.; Bentria, B. The effect of vanadium impurity on Nickel Σ5(012) grain boundary. Mater. Sci. Eng. A 2013, 577, 197–201. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.h.; Ye, Z.; Fan, D.Y.; Chen, S.H.; Zhao, Y. First–principles investigation on the interaction of Boron atom with nickel part II: Absorption and diffusion at grain boundary. J. Alloys Compd. 2017, 708, 1089–1095. [Google Scholar] [CrossRef]
Sample | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | B | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
254SMO–0B | 0.010 | 0.61 | 0.43 | 0.024 | 0.001 | 20.18 | 18.00 | 6.00 | 0.69 | 0.193 | – | Bal. |
254SMO–40B | 0.014 | 0.62 | 0.94 | 0.014 | 0.006 | 20.15 | 18.11 | 6.12 | 0.72 | 0.200 | 0.004 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Zhang, Y.; Yang, S.; Ma, J.; Zhang, C.; Jiang, Z.; Li, H.; Han, P. Effect of Boron Addition on the Oxide Scales Formed on 254SMO Super Austenitic Stainless Steels in High-Temperature Air. Metals 2023, 13, 258. https://doi.org/10.3390/met13020258
Ren J, Zhang Y, Yang S, Ma J, Zhang C, Jiang Z, Li H, Han P. Effect of Boron Addition on the Oxide Scales Formed on 254SMO Super Austenitic Stainless Steels in High-Temperature Air. Metals. 2023; 13(2):258. https://doi.org/10.3390/met13020258
Chicago/Turabian StyleRen, Junyu, Yi Zhang, Song Yang, Jinyao Ma, Caili Zhang, Zhouhua Jiang, Huabing Li, and Peide Han. 2023. "Effect of Boron Addition on the Oxide Scales Formed on 254SMO Super Austenitic Stainless Steels in High-Temperature Air" Metals 13, no. 2: 258. https://doi.org/10.3390/met13020258
APA StyleRen, J., Zhang, Y., Yang, S., Ma, J., Zhang, C., Jiang, Z., Li, H., & Han, P. (2023). Effect of Boron Addition on the Oxide Scales Formed on 254SMO Super Austenitic Stainless Steels in High-Temperature Air. Metals, 13(2), 258. https://doi.org/10.3390/met13020258