Evaluation of the Elastic Modulus and Plateau Stress of a 2D Porous Aluminum Alloy Based on a Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
Finite Element Model
2.2. CNN
3. CNN-Based Forward Prediction
3.1. First Stage
3.1.1. Convolution Kernel Size
3.1.2. Overfitting
3.2. Second Stage
4. CNN-Based Inverse Design
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, P.S. Introduction to Porous Materials; Tsinghua University Press: Beijing, China, 2004. [Google Scholar]
- Wang, J.; Qi, M.S.; Zhang, W.; Zhang, J.P.; Hou, X.L.; Wang, Z.J. Influence of Relative Density on Compression Properties and Energy Absorption of Spherical Open Cell Aluminum Foam. Packag. Eng. 2019, 40, 105–110. [Google Scholar] [CrossRef]
- Wang, Z.G.; Xu, Y.P.; He, D.P. Quasi-static compressive property of spherical pores Al foam. Ordnance Mater. Sci. Eng. 2008, 31, 15–19. [Google Scholar] [CrossRef]
- Hou, X.L.; QI, M.S.; Zhang, W.; Wang, J.; Zhang, J.P. Effect of Pore Size on on Compression and Energy Absorption Properties of Open-cell Aluminum Foam with Spherical Pores. Packag. Eng. 2019, 40, 86–91. [Google Scholar] [CrossRef]
- Qu, X.S.; Wang, L.H.; Ju, Y.; Liu, D.W.; Zhang, H.L.; Zhu, Z.J.; Hu, Y.B. 3D Modeling Method and Simulation for Mechanical Properties of Foam Metal Sandwich Panel. Mater. Mech. Eng. 2020, 44, 91–96. [Google Scholar] [CrossRef]
- Cheng, F.F. Simulation of Aluminum Foam Mechanical Properties Based on Finite Element Method. Master’s Thesis, Taiyuan University of Science And Technology, Taiyuan, China, 2015. [Google Scholar]
- Jiang, K. Study on Mechanical Properties of Aluminum Foams with Gradient Porosity based on Voronoi Model. Fly Ash Compr. Util. 2021, 35, 64–71. [Google Scholar] [CrossRef]
- Liu, Y.D.; Yu, J.L.; Zheng, Z.J. Effect of Inertia on the Dynamic Behavior of Cellular Metal. Chin. J. High Press. Phys. 2008, 22, 118–124. [Google Scholar] [CrossRef]
- Guo, L.L.; Ding, S.F. Research Progrss on Deep Learning. Comput. Sci. 2015, 42, 28–33. [Google Scholar] [CrossRef]
- Alqahtani, N.; Alzubaidi, F.; Armstrong, R.T.; Swietojanski, P.; Mostaghimi, P. Machine learning for predicting properties of porous media from 2d X-ray images. J. Pet. Sci. Eng. 2020, 184, 106514. [Google Scholar] [CrossRef]
- Liu, X.H.; Yan, Z.L.; Zhong, Z. Predicting elastic modulus of porous La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes from microstructures via FEM and deep learning. Int. J. Hydrogen Energy 2021, 46, 22079–22091. [Google Scholar] [CrossRef]
- Song, X.K.; Ye, G.H.; Zhou, J.H.; Zhou, X.G. Prediction of Effective Diffusivity of Porous Material Based on Convolutional Neural Network. Chem. React. Eng. Technol. 2018, 34, 97–103. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, S.S.; Rong, Q.Y.; Bao, H. Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. Int. J. Heat Mass Transf. 2018, 127, 908–916. [Google Scholar] [CrossRef]
- Li, J. A Machine Learning-based Approach for Permeability Prediction of Porous Media. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2019. [Google Scholar]
- Tang, P.F.; Zhang, D.X.; Li, H. Predicting permeability from 3D rock images based on CNN with physical information. J. Hydrol. 2022, 606, 127473. [Google Scholar] [CrossRef]
- Tian, J.W.; Qi, C.C.; Sun, Y.F.; Yaseen, Z.M. Surrogate permeability modelling of low-permeable rocks using convolutional neural networks. Comput. Methods Appl. Mech. Eng. 2020, 366, 113103. [Google Scholar] [CrossRef]
- Sui, W.B.; Cheng, S. Calculation methods for absolute permeability of sandstone digital cores based on convolutional neural networks. Pet. Geol. Recovery Effic. 2021, 29, 128–136. [Google Scholar] [CrossRef]
- Wu, J.L.; Yin, X.L.; Xiao, H. Seeing permeability from images: Fast prediction with convolutional neural networks. Sci. Bull. 2018, 63, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Raj, R.E.; Daniel, B.S.S. Prediction of compressive properties of closed-cell aluminum foam using artificial neural network. Comput. Mater. Sci. 2008, 43, 767–773. [Google Scholar] [CrossRef]
- Liu, N. Simulation and Modeling of Low Temperature Effective Thermal Conductivity of Hollow Microsphere-Type Foam Gold. Ph.D. Thesis, China Academy of Engineering Physics, Mianyang, China, 2018. [Google Scholar]
- Lu, T.J.; Ong, J.H.M. Characterization of close-celled cellular aluminum alloys. J. Mater. Sci. 2001, 36, 2773–2786. [Google Scholar] [CrossRef]
- Paul, A.K.R.; Ramamurty, U. Strain rate sensitivity of a closed-cell aluminum foam. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2000, 281, 1–7. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Wan, J.; Jiang, J.-W.; Park, H.S. Machine learning-based design of porous graphene with low thermal conductivity. Carbon 2020, 157, 262–269. [Google Scholar] [CrossRef]
- Hanakata, P.Z.; Cubuk, E.D.; Campbell, D.K.; Park, H.S. Accelerated Search and Design of Stretchable Graphene Kirigami Using Machine Learning. Phys. Rev. Lett. 2018, 121, 255304. [Google Scholar] [CrossRef] [PubMed]
Density/(kg/m3) | Elastic Modulus/GPa | Poisson’s Ratio | Yield Stress/MPa |
---|---|---|---|
2.78 × 103 | 70 | 0.33 | 270 |
Model | MSE | R2 |
---|---|---|
Model 1 | 0.0081 | 0.5656 |
Model 2 | 0.0100 | 0.3731 |
Model 3 | 0.0093 | 0.4940 |
Model 4 | 0.0080 | 0.5094 |
Model 5 | 0.0083 | 0.4776 |
Model | BN | L2 | Dropout | MSE | R2 |
---|---|---|---|---|---|
Model 1 | Yes | Yes | 0.1 after Maxpolling layers, 0.3 after Fully connected layers | 0.0088 | 0.7199 |
Model 2 | Yes | Yes | 0.1 after Maxpolling layers, 0.3 after Fully connected layers | 0.0068 | 0.6894 |
Model 3 | Yes | Yes | 0.1 after Maxpolling layers, 0.3 after Fully connected layers | 0.0063 | 0.6205 |
Model 4 | Yes | Yes | 0.1 after Maxpolling layers, 0.3 after Fully connected layers | 0.0042 | 0.7392 |
Model 5 | Yes | Yes | 0.1 after Maxpolling layers, 0.3 after Fully connected layers | 0.0055 | 0.7490 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Xu, Y.; Wang, L. Evaluation of the Elastic Modulus and Plateau Stress of a 2D Porous Aluminum Alloy Based on a Convolutional Neural Network. Metals 2023, 13, 284. https://doi.org/10.3390/met13020284
Sun J, Xu Y, Wang L. Evaluation of the Elastic Modulus and Plateau Stress of a 2D Porous Aluminum Alloy Based on a Convolutional Neural Network. Metals. 2023; 13(2):284. https://doi.org/10.3390/met13020284
Chicago/Turabian StyleSun, Jianhang, Yepeng Xu, and Lei Wang. 2023. "Evaluation of the Elastic Modulus and Plateau Stress of a 2D Porous Aluminum Alloy Based on a Convolutional Neural Network" Metals 13, no. 2: 284. https://doi.org/10.3390/met13020284
APA StyleSun, J., Xu, Y., & Wang, L. (2023). Evaluation of the Elastic Modulus and Plateau Stress of a 2D Porous Aluminum Alloy Based on a Convolutional Neural Network. Metals, 13(2), 284. https://doi.org/10.3390/met13020284