Wear Behavior of Nb Alloyed Gray Cast Iron for Automotive Brake Disc Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Hardness Measurements
3.3. Tribological Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, D. Braking of Road Vehicles. In Braking of Road Vehicles, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Straffelini, G. Friction and Wear (Springer Tracts in Mechanical Engineering); Springer: Cham, Switzerland, 2015. [Google Scholar]
- Jimbo, Y.; Mibe, T.; Akiyama, K.; Matsui, H.; Yoshida, M.; Ozawa, A. Development of high thermal conductivity cast iron for brake disk rotors. In SAE Transactions; SAE International: Warrendale, PA, USA, 1990. [Google Scholar] [CrossRef]
- Xu, W.; Ferry, M.; Wang, Y. Influence of alloying elements on as-cast microstructure and strength of gray iron. Mater. Sci. Eng. A 2005, 33, 326–333. [Google Scholar] [CrossRef]
- Maluf, O.; Angeloni, M.; Milan, M.; Spinelli, D.; Wladimir, W.; Filho, B. Development of materials for automotive disc brakes. Pesqui. Technol. Minerva 2004, 2, 149–158. [Google Scholar]
- Grabiec, T. Wear and Friction Behavior of Friction Pairs Tested with Different Types of Grey Cast Iron and Low Met Friction Material. SAE Int. J. Passeng. Cars—Mech. Syst. 2014, 7, 1361–1368. [Google Scholar] [CrossRef]
- Djafri, M.; Bouchetara, M.; Busch, C.; Weber, S. Effects of humidity and corrosion on the tribological behaviour of the brake disc materials. Wear 2014, 321, 8–15. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Non-exhaust traffic related emission. Brake and tyre wear PM. In European Commission Joint Research Centre- Institute of Energy and Transport 2014; Publications Office of the European Union: Luxembourg, 2014; Available online: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/non-exhaust-traffic-related-emissions-brake-and-tyre-wear-pm (accessed on 20 July 2020).
- Gonet, T.; Maher, B.A. Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A Review. Environ. Sci. Technol. 2019, 17, 9970–9991. [Google Scholar] [CrossRef] [PubMed]
- 2022/0365(COD); Type-Approval of Motor Vehicles and Engines and of Systems, Components and Separate Technical Units Intended for such Vehicles, with Respect to Their Emissions and Battery Durability (Euro 7). European Parliament Legislative Observatory: Strasbourg, France, 2022.
- Puisney, C.; Oikonomou, E.K.; Nowak, S.; Chevillot, A.; Casale, S.; Baeza-Squiban, A.; Berret, J.-F. Brake wear (nano)particle characterization and toxicity on airway epithelial cells: In vitro. Environ. Sci. Nano 2018, 5, 1036–1044. [Google Scholar] [CrossRef]
- Perricone, G.; Matějka, V.; Alemani, M.; Valota, G.; Bonfanti, A.; Ciotti, A.; Olofsson, U.; Söderberg, A.; Wahlström, J.; Nosko, O.; et al. A concept for reducing PM10 emissions for car brakes by 50%. Wear 2018, 396–397, 135–145. [Google Scholar] [CrossRef]
- Aranke, O.; Algenaid, W.; Awe, S.; Joshi, S. Coatings for Automotive Gray Cast Iron Brake Discs: A Review. Coatings 2019, 9, 552. [Google Scholar] [CrossRef]
- Federici, M.; Menapace, C.; Moscatelli, A.; Gialanella, S.; Straffelini, G. Pin-on-disc study of a friction material dry sliding against HVOF coated discs at room temperature and 300 degrees C. Tribol. Int. 2017, 115, 89–99. [Google Scholar] [CrossRef]
- Menapace, C.; Mancini, A.; Federici, M.; Straffelini, G.; Gialanella, S. Characterization of airborne wear debris produced by brake pads pressed against HVOF-coated discs. Friction 2019, 8, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Wahlström, J.; Lyu, Y.; Matjeka, V.; Söderberg, A. A pin–on–disc tribometer study of disc brake contact pairs with respect to wear and airborne particle emissions. Wear 2017, 384–385, 124–130. [Google Scholar] [CrossRef]
- Tonolini, P.; Montesano, L.; Pola, A.; Landriani, E.; Gelfi, M. The effect of laser-cladding on the wear behavior of gray cast iron brake disc. Procedia Struct. Integr. 2021, 33, 1152–1161. [Google Scholar] [CrossRef]
- Elbrigmann, T. Hard like Diamond. Porsche Cust. Mag. Christophorus 2017, 4, 384. [Google Scholar]
- Bosch. iDisc. Available online: https://www.bosch-mobility-solutions.com/en/solutions/driving-safety/idisc/ (accessed on 1 March 2020).
- Dutta, B.; Palmiere, E.; Sellars, C. Modelling the kinetics of strain induced precipitation in Nb microalloyed steels. Acta Mater. 2001, 49, 785–794. [Google Scholar] [CrossRef]
- DeArdo, A.J. Niobium in modern steels. Int. Mater. Rev. 2003, 48, 371–402. [Google Scholar] [CrossRef]
- Sun, L.-Y.; Liu, X.; Xu, X.; Lei, S.-W.; Li, H.-G.; Zhai, Q.-J. Review on niobium application in microalloyed steel. J. Iron Steel Res. Int. 2022, 29, 1513–1525. [Google Scholar] [CrossRef]
- Bedolla-Jacuinde, A. Niobium in Cast Irons. In Progress in Metallic Alloys; Vadim, G., Ed.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef]
- Pourasiabi, H.; Gates, J. Effects of niobium macro-additions to high chromium white cast iron on microstructure, hardness and abrasive wear behaviour. Mater. Des. 2021, 212, 110261. [Google Scholar] [CrossRef]
- Filipovic, M.; Kamberovic, Z.; Korac, M.; Gavrilovski, M. Microstructure and mechanical properties of Fe–Cr–C–Nb white cast irons. Mater. Des. 2013, 47, 41–48. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, H.; Zheng, D.; Hua, Q.; Zhai, Q. Effect of niobium on solidification structure of gray cast iron. TMS Annu. Meet. 2010, 3, 817–828. [Google Scholar]
- Wenbin, Z.; Hongbo, Z.; Dengke, Z.; Hongxing, Z.; Qin, H.; Qijie, Z. Niobium alloying effect in high carbon equivalent grey cast iron. China Foundry 2011, 8, 36–40. [Google Scholar]
- Mohrbacher, H.; Zhai, Q. Niobium alloying in grey cast iron for vehicle brake discs. In Proceedings of the Materials Science and Technology Conference and Exhibition 2011, MS&T’11, Columbus, OH, USA, 16–20 October 2011; Taylor & Francis: Oxford, UK; Volume 1, pp. 434–445. [Google Scholar]
- Hanna, I. Mechanical Properties of Niobium Alloyed Gray Iron. Master Thesis, Royal Institute of Technology, Stockholm Sweden, 2011. [Google Scholar]
- Yao, Y. The Influence of Niobium Content and Cooling Rate on Mechanical Properties of Grey Cast Iron. Master Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2019. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244999 (accessed on 15 December 2022).
- James, J.; Ronald, C.; Leonard, M.; Michael, M.; John, E. High Strength Gray Cast Iron Containing Niobium. Patent Appl. WO 2008/105987 A1, 4 September 2008. [Google Scholar]
- Pan, S.; Zeng, F.; Su, N.; Xian, Z. The effect of niobium addition on the microstructure and properties of cast iron used in cylinder head. J. Mater. Res. Technol. 2019, 9, 1509–1518. [Google Scholar] [CrossRef]
- Joachim, P.; Lotz, W. Optimized Gray Cast Iron Plate Alloy for Utility Vehicle Brake Disks. Patent Number US005894010A, 13 April 1999. [Google Scholar]
- Li, Q.; Zhang, Y.; Zhang, Y.; Liu, H.; Ren, H.; Zhong, Y.; Huang, X.; Huang, W. Influence of Sn and Nb additions on the microstructure and wear characteristics of a gray cast iron. Appl. Phys. A 2020, 126, 282. [Google Scholar] [CrossRef]
- Leal, G.; Enloe, C.M.; Meira, M.; Franca, E.; Nascimento, F.; Halonen, A. Wear evaluation of niobium-added cast iron for brake disc and drum applications. SAE Int. J. Adv. Curr. Prac. Mobil. 2020, 3, 980–987. [Google Scholar] [CrossRef]
- Weitao, S.; Bin, W.; Xiaoliang, L.; Yuqian, W.; Jian, Z. Controlling the tribology performance of gray cast iron by tailoring the microstructure. Tribol. Int. 2022, 167, 107343. [Google Scholar] [CrossRef]
- Metinoz, I.; Matejka, V.; Alemani, M.; Wahlström, J.; Perricone, G. Could pin-on-disc tribometers be used to study the friction/wear performance of disc brake materials? In Proceedings of the Eurobrake, Milano, Italy, 13–15 June 2016. [Google Scholar]
- Chan, D.; Stachowiak, G.W. Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 2004, 218, 953–966. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Song, S.-Q.; Cromarty, R.; Chen, Y.-L.; Xue, Z.-L. The Precipitation of Niobium Carbide and Its Influence on the Structure of HT250 for Automobile Wheel Hubs. Materials 2021, 14, 6109. [Google Scholar] [CrossRef]
- Devecili, A.O.; Yakut, R. The Effect of Nb Supplement on Material Characteristics of Iron with Lamellar Graphite. Adv. Mater. Sci. Eng. 2014, 2014, 465947. [Google Scholar] [CrossRef]
- Reis, B.C.M.; dos Santos, A.J.; Pereira, N.F.S.; do Carmo, D.J.; de Faria, G.L.; Câmara, M.A.; de Faria, P.E.; Abrão, A.M. Effect of Nb Addition on the Machinability of a Pearlitic Gray Cast Iron. J. Mater. Eng. Perform. 2022, 31, 5983–5999. [Google Scholar] [CrossRef]
- Ahmed, M.; Soliman, M.; Youssef, M.; Bähr, R.; Nofal, A. Effect of Niobium on the Microstructure and Mechanical Properties of Alloyed Ductile Irons and Austempered Ductile Irons. Metals 2021, 11, 703. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, L.; Zhang, W.; Mohrbacher, H.; Wang, W.; Guo, A.; Zhai, Q. Effects of niobium alloying on microstructure, toughness and wear resistance of austempered ductile iron. Mater. Sci. Eng. A 2019, 760, 186–194. [Google Scholar] [CrossRef]
- Hasbrouck, M. The Effects of Molybdenum, Chromium, and Niobium On Gray Iron For Brake Rotor Applications. Master Thesis, Michigan Technological University, Houghton, MI, USA, 2021. [Google Scholar]
- Riposan, I.; Chisamera, M.; Stan, S.; Hartung, C.; White, D. Three-stage model for nucleation of graphite in grey cast iron. Mater. Sci. Technol. 2010, 26, 1439–1447. [Google Scholar] [CrossRef]
- Clayton, P.; Danks, D. Effect of interlamellar spacing on the wear resistance of eutectoid steels under rolling-sliding conditions. Wear 1990, 135, 369–389. [Google Scholar] [CrossRef]
- Pero-Sanz Elorz, J.A.; Fernández González, D.; Verdeja, L.F. (Eds.) Stable Eutectic—Graphite Morphologies. In Physical Metallurgy of Cast Irons; Springer International Publishing: Cham, Switzerland, 2018; pp. 19–31. [Google Scholar]
- Collini, L.; Nicoletto, G.; Konečná, R. Microstructure and mechanical properties of pearlitic gray cast iron. Mater. Sci. Eng. A 2008, 488, 529–539. [Google Scholar] [CrossRef]
- Willidal, T.; Bauer, W.; Schumacher, P. Stress/strain behaviour and fatigue limit of grey cast iron. Mater. Sci. Eng. A 2005, 413-414, 578–582. [Google Scholar] [CrossRef]
- Lyu, Y.; Leonardi, M.; Wahlström, J.; Gialanella, S.; Olofsson, U. Friction, wear and airborne particle emission from Cu-free brake materials. Tribol. Int. 2019, 141, 105959. [Google Scholar] [CrossRef]
Samples | C | Si | Mn | P | S | Cr | Mo | Sn | Ti | Nb | CE * |
---|---|---|---|---|---|---|---|---|---|---|---|
D-0 | 3.20 | 1.91 | 0.63 | 0.04 | 0.14 | 0.1 | 0.01 | 0.08 | 0.02 | 0.00 | 3.8 |
D-0.3 | 3.38 | 1.58 | 0.63 | 0.04 | 0.13 | 0.1 | 0.01 | 0.07 | 0.01 | 0.30 | 3.9 |
D-0.5 | 3.26 | 1.62 | 0.55 | 0.04 | 0.10 | 0.2 | 0.01 | 0.05 | 0.01 | 0.51 | 3.8 |
D-0.7 | 3.24 | 1.59 | 0.52 | 0.04 | 0.09 | 0.2 | 0.01 | 0.05 | 0.01 | 0.72 | 3.8 |
Elements | C | O | Mg | Al | Si | S | Ca | Ti | Cr | Fe | Zn | Sn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Contents (wt%) | 51.12 | 28.16 | 5.22 | 2.06 | 1.17 | 0.93 | 0.64 | 1.38 | 0.59 | 6.54 | 0.54 | 1.65 |
Spectrum | C | S | Mn | Ti | Fe | Nb |
---|---|---|---|---|---|---|
1 | - | 37.93 | 54.59 | - | 7.48 | - |
2 | 26.15 | - | - | 1.72 | 2.29 | 69.85 |
Spectrum | C | O | Mg | Si | S | Ti | V | Mn | Fe | Nb |
---|---|---|---|---|---|---|---|---|---|---|
1 | N/A | - | - | - | 30.99 | - | - | 45.23 | 23.78 | - |
2 | N/A | 12.46 | 1.04 | 1.08 | - | 1.02 | 1.09 | - | 14.47 | 68.83 |
Spectrum | C | O | Mg | Al | Si | S | Mn | Ti | Fe | Sn | Nb |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | N/A | 33.02 | 1.60 | - | 1.65 | 0.71 | 0.77 | - | 62.25 | - | - |
2 | N/A | - | - | - | - | - | - | 1.85 | 2.96 | - | 95.19 |
3 | N/A | 44.26 | 1.93 | 0.84 | 1.16 | 0.73 | - | - | 49.26 | 1.82 | - |
4 | N/A | 46.16 | 1.41 | 0.93 | 1.21 | - | - | - | 48.34 | 1.96 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonolini, P.; Montesano, L.; Pola, A.; Bontempi, G.; Gelfi, M. Wear Behavior of Nb Alloyed Gray Cast Iron for Automotive Brake Disc Application. Metals 2023, 13, 365. https://doi.org/10.3390/met13020365
Tonolini P, Montesano L, Pola A, Bontempi G, Gelfi M. Wear Behavior of Nb Alloyed Gray Cast Iron for Automotive Brake Disc Application. Metals. 2023; 13(2):365. https://doi.org/10.3390/met13020365
Chicago/Turabian StyleTonolini, Pietro, Lorenzo Montesano, Annalisa Pola, Gianpietro Bontempi, and Marcello Gelfi. 2023. "Wear Behavior of Nb Alloyed Gray Cast Iron for Automotive Brake Disc Application" Metals 13, no. 2: 365. https://doi.org/10.3390/met13020365
APA StyleTonolini, P., Montesano, L., Pola, A., Bontempi, G., & Gelfi, M. (2023). Wear Behavior of Nb Alloyed Gray Cast Iron for Automotive Brake Disc Application. Metals, 13(2), 365. https://doi.org/10.3390/met13020365