Effects of Carbon Content on the Properties of Novel Nitrogen-Free Austenitic Stainless Steel with High Hardness Prepared via Metal Injection Molding
Abstract
:1. Introduction
2. Experimental Section
3. Experimental Results
3.1. Sintering Properties
3.2. Microstructure
3.3. Mechanical Properties
3.4. Corrosion Resistance
4. Discussion
4.1. Densification
4.2. Microstructure Evolution and Strengthening Mechanism
4.3. Corrosion Resistance
5. Conclusions
- (1)
- The novel stainless steel developed in this study achieved a high density at a significantly lower sintering temperature than that of the 316 L stainless steel. However, overburning occurred in samples with graphite concentrations higher than 3000 ppm.
- (2)
- Graphite addition at 500–2000 ppm improved the mechanical properties of the heat-treated novel stainless steel. However, when the graphite addition reached 3000 ppm, the density decreased, and the mechanical properties deteriorated.
- (3)
- Heat-treated samples with different graphite addition levels exhibited different annealing twin and carbide morphologies. In samples containing 0–500 ppm graphite, large carbides precipitated along the grain boundaries, whereas fewer carbides precipitated within the grain. However, when the concentration was between 750 and 1500 ppm, a large number of granular carbides formed, exhibiting a co-lattice relationship with the matrix, which significantly improved the mechanical properties. A graphite concentration higher than 2000 ppm led to the generation of large carbides, which exhibited non-coherent lattice relationships with the matrix.
- (4)
- Large grain-boundary carbides led to the formation of Cr-poor intergranular regions, which reduced the corrosion resistance of the material. Samples with a graphite content in the range of 750–2000 ppm exhibited better corrosion resistance than 316 L stainless steel. Here, the 1000 ppm added samples exhibited the optimal performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandya, S.; Ramakrishna, K.; Annamalai, A.R.; Upadhyaya, A. Effect of sintering temperature on the mechanical and electrochemical properties of austenitic stainless steel. Mater. Sci. Eng. A 2012, 556, 271–277. [Google Scholar] [CrossRef]
- Yu, K.; Ye, S.; Mo, W.; Lv, Y.; Jiang, H.; Ma, R.; Kwok, C.; Yu, P. Oxygen content control in metal injection molding of 316L austenitic stainless steel using water atomized powder. J. Manuf. Process. 2020, 50, 498–509. [Google Scholar] [CrossRef]
- Zhai, W.; Zhou, W.; Nai, S.M.L. Grain refinement of 316L stainless steel through in-situ alloying with Ti in additive manufacturing. Mater. Sci. Eng. A 2022, 840, 142912. [Google Scholar] [CrossRef]
- Gulsoy, H.O.; Pazarlioglu, S.; Gulsoy, N.; Gundede, B.; Mutlu, O. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties. J. Mech. Behav. Biomed. Mater. 2015, 51, 215–224. [Google Scholar] [CrossRef]
- Schaper, J.G.; Wolff, M.; Wiese, B.; Ebel, T.; Willumeit-Römer, R. Powder metal injection moulding and heat treatment of AZ81 Mg alloy. J. Mater. Process. Technol. 2018, 267, 241–246. [Google Scholar] [CrossRef]
- Nayak, C.V.; Ramesh, M.R.; Desai, V.; Samanta, S.K. Fabrication of stainless steel based composite by metal injection moulding. Mater. Today Proc. 2018, 5, 6805–6814. [Google Scholar] [CrossRef]
- Ali, S.; Rani, A.M.; Altaf, K.; Baig, Z. Investigation of Boron addition and compaction pressure on the compactibility, densification and microhardness of 316L Stainless Steel. IOP Conf. Series Mater. Sci. Eng. 2018, 344, 012023. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.; Ahmad, F.; Yusoff, P.; Chai, W.; Ngeow, W.; Nawi, M. Investigation of boron addition on densification and cytotoxicity of powder injection molded 316L stainless steel dental materials. Arab. J. Sci. Eng. 2016, 41, 4669–4681. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Jiang, Z.; Li, Z.; Wu, J.; Zhang, B.; Duan, F.; Feng, H.; Zhu, H. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2019, 42, 143–155. [Google Scholar] [CrossRef]
- Sheik, S.; Tirumalla, A.; Gurrala, A.K.; Mohammed, R. Effect of microstructural morphology on corrosion susceptibility of austenitic and super austenitic stainless steels. Mater. Today Proc. 2022, 66, 514–518. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Z.; Li, H.; Feng, H.; Zhang, B. Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method. J. Alloys Compd. 2017, 695, 3083–3093. [Google Scholar] [CrossRef]
- Xu, Z.-W.; Jia, C.-C.; Kuang, C.-J.; Qu, X.-H. Fabrication and sintering behavior of high-nitrogen nickel-free stainless steels by metal injection molding. Int. J. Miner. Met. Mater. 2010, 17, 423–428. [Google Scholar] [CrossRef]
- Lou, J.; He, H.; Li, Y.; Zhang, H.; Fang, Z.; Wei, X. Effects of Trace Carbon Contents on Lattice Distortion and Nano-Copper Phase Precipitation in Metal Injection-Molded 17-4PH Stainless Steel. Jom 2019, 71, 1073–1081. [Google Scholar] [CrossRef]
- Lou, J.; Liu, M.; He, H.; Wang, X.; Li, Y.; Ouyang, X.; An, C. Investigation of Decarburization Behaviour during the Sintering of Metal Injection Moulded 420 Stainless Steel. Metals 2020, 10, 211. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Hu, X.; Kang, X.; Li, D. Precipitation of M23C6 and its effect on tensile properties of 0.3C–20Cr–11Mn–1Mo–0.35N steel. Mater. Des. 2015, 78, 42–50. [Google Scholar] [CrossRef]
- Zhai, R.; Zhang, H.; Liu, S.; Sun, M.; Sheng, S.; Xu, B. Influence of carbon content on the microstructure and cryogenic tensile properties of N50 austenitic stainless steel after aging treatment. J. Nucl. Mater. 2022, 571, 154023. [Google Scholar] [CrossRef]
- Jones, R.; Randle, V. Sensitisation behaviour of grain boundary engineered austenitic stainless steel. Mater. Sci. Eng. A 2010, 527, 4275–4280. [Google Scholar] [CrossRef]
- Lewis, M.; Hattersley, B. Precipitation of M23C6 in austenitic steels. Acta Met. 1965, 13, 1159–1168. [Google Scholar] [CrossRef]
- Sasmal, B. Mechanism of the formation of lamellar M23C6 at and near twin boundaries in austenitic stainless steels. Met. Mater. Trans. A 1999, 30, 2791–2801. [Google Scholar] [CrossRef]
- Kim, J.; Young, Y. Study on the passive film of Type 316 stainless steel. Int. J. Electrochem. Sci. 2013, 8, 11847–11859. [Google Scholar]
- Bollina, R. Supersolidus Sintering of Boron Added Stainless Steel Powder Compacts. In European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings; The European Powder Metallurgy Association: Chantilly, France, 2004; Volume 3. [Google Scholar]
- Anburaj, J.; Nazirudeen, S.M.; Narayanan, R.; Anandavel, B.; Chandrasekar, A. Ageing of forged superaustenitic stainless steel: Precipitate phases and mechanical properties. Mater. Sci. Eng. A 2012, 535, 99–107. [Google Scholar] [CrossRef]
- Trillo, E.; Murr, L. Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel. Acta Mater. 1998, 47, 235–245. [Google Scholar] [CrossRef]
- Trillo, E.; Trillo, E. A TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientations in 304 stainless steels. J. Mater. Sci. 1998, 33, 1263–1271. [Google Scholar] [CrossRef]
- Chen, G.; Rahimi, R.; Harwarth, M.; Motylenko, M.; Xu, G.; Biermann, H.; Mola, J. Non-cube-on-cube orientation relationship between M23C6 and austenite in an austenitic stainless steel. Scr. Mater. 2022, 213, 114597. [Google Scholar] [CrossRef]
- Kolli, S.; Javaheri, W.; Kömi, J.; Porter, D. On the role of grain size and carbon content on the sensitization and desensitization behavior of 301 austenitic stainless steel. Metals 2019, 9, 1193. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-X.; He, Y.-N.; Yu, S.-R.; Zhang, P.-Y. Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316L stainless steel. Corros. Sci. 2013, 66, 211–216. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Jiang, Z.; Zhang, B.; Li, Z.; Wu, J.; Fan, S.; Feng, H.; Zhu, H. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654. Mater. Charact. 2019, 152, 141–150. [Google Scholar] [CrossRef]
- Li, B.; Qu, H.; Lang, Y.; Feng, H.; Chen, Q.; Chen, H. Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels. Corros. Sci. 2020, 173, 108791. [Google Scholar] [CrossRef]
- Bayraktaroglu, E.; Gulsoy, H.O.; Gulsoy, N.; Er, O.; Kilic, H. Effect of boron addition on injection molded 316L stainless steel: Mechanical, corrosion properties and in vitro bioactivity. Bio-Med. Mater. Eng. 2012, 22, 333–349. [Google Scholar] [CrossRef]
Element | Cr | Ni | Mo | Cu | Mn | Si | C | O | Fe | |
---|---|---|---|---|---|---|---|---|---|---|
Sample A | Content (wt.%) | 21.37 | 15.45 | 4.41 | 3.22 | 0.35 | 0.47 | 0.026 | 0.078 | Bal. |
316 L | Content (wt.%) | 17.80 | 15.54 | 2.86 | 0.33 | 0.14 | 0.24 | 0.022 | 0.071 | Bal |
316 L | A | B | C | D | E | F | G | H | |
---|---|---|---|---|---|---|---|---|---|
Graphite Dosage (ppm) | 0 | 0 | 500 | 750 | 1000 | 1500 | 2000 | 3000 | 5000 |
Sinter Temperature (°C) | 1400 | 1340 | 1335 | 1330 | 1325 | 1320 | 1300 | 1270 | 1250 |
Relative Density (%) | 98.93 | 98.70 | 98.77 | 98.71 | 99.87 | 98.57 | 98.48 | 95.53 | 91.81 |
Carbon Content (ppm) | 103 | 615 | 824 | 1202 | 1444 | 1958 | 2397.2 | 3120 | 5176 |
Oxygen Content (ppm) | 370 | 660 | 427 | 330 | 287 | 220 | 170 | 399 | 370 |
Hardness (HV) | 150 | 183.80 | 184.60 | 204.73 | 201.83 | 213.27 | 214.23 | 217.00 | 214.27 |
Tensile Strength (MPa) | 509.48 | 508.97 | 533.78 | 546.94 | 558.91 | 608.62 | 643.88 | 432.73 | 537.74 |
Yield Strength (MPa) | 211.60 | 213.95 | 228.59 | 232.18 | 242.95 | 266.27 | 306.38 | 236.76 | 412.77 |
Elongation (%) | 61.17 | 31.07 | 31.57 | 29.68 | 25.18 | 24.63 | 21.38 | 6.72 | 3.05 |
316 L | A | B | C | D | E | F | G | H | |
---|---|---|---|---|---|---|---|---|---|
Icoor (uA/cm2) | 0.147 | 0.165 | 0.015 | 0.0652 | 0.0409 | 0.0541 | 0.184 | 0.165 | 0.161 |
Ecoor (mV) | −285.33 | −290.95 | −193.21 | −263.68 | −268.93 | −258.31 | –282.96 | −283.05 | −181.04 |
316 L | A | B | C | D | E | F | G | H | |
---|---|---|---|---|---|---|---|---|---|
Rs (Ω cm2) | 6.17 | 5.62 | 6.05 | 5.97 | 5.26 | 5.21 | 5.78 | 5.27 | 6.25 |
Qf (10−5 Ω−1 sn cm−2) | 1.42 | 4.50 | 1.63 | 2.72 | 2.38 | 3.72 | 3.18 | 2.70 | 10.4 |
n1 | 0.951 | 0.848 | 0.836 | 0.874 | 0.857 | 0.881 | 0.872 | 0.860 | 0.665 |
Rf (Ω cm2) | 4.87 | 17.2 | 30.1 | 401 | 484 | 123 | 90.3 | 68.3 | 6450 |
Qdl (10−7 Ω−1 sn cm−2) | 377 | 27.8 | 34.2 | 35.2 | 1.14 | 27.1 | 99.1 | 136 | 1420 |
n2 | 0.813 | 0.940 | 0.863 | 0.884 | 0.892 | 0.933 | 0.869 | 0.861 | 0.711 |
Rct (kΩ cm2) | 184 | 163 | 6740 | 621 | 2940 | 541 | 681 | 641 | 37.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Lou, J.; He, H.; Wu, C.; Huang, Y.; Su, N.; Li, S. Effects of Carbon Content on the Properties of Novel Nitrogen-Free Austenitic Stainless Steel with High Hardness Prepared via Metal Injection Molding. Metals 2023, 13, 403. https://doi.org/10.3390/met13020403
Luo X, Lou J, He H, Wu C, Huang Y, Su N, Li S. Effects of Carbon Content on the Properties of Novel Nitrogen-Free Austenitic Stainless Steel with High Hardness Prepared via Metal Injection Molding. Metals. 2023; 13(2):403. https://doi.org/10.3390/met13020403
Chicago/Turabian StyleLuo, Xin, Jia Lou, Hao He, Chu Wu, Yuhang Huang, Na Su, and Shibo Li. 2023. "Effects of Carbon Content on the Properties of Novel Nitrogen-Free Austenitic Stainless Steel with High Hardness Prepared via Metal Injection Molding" Metals 13, no. 2: 403. https://doi.org/10.3390/met13020403
APA StyleLuo, X., Lou, J., He, H., Wu, C., Huang, Y., Su, N., & Li, S. (2023). Effects of Carbon Content on the Properties of Novel Nitrogen-Free Austenitic Stainless Steel with High Hardness Prepared via Metal Injection Molding. Metals, 13(2), 403. https://doi.org/10.3390/met13020403