Influence of Ladle Exchange on Inclusions in Transition Slabs of Continuous Casting for Automotive Exposed Panel Steel
Abstract
:1. Introduction
2. Research Method
3. Analysis Results and Discussion
3.1. Thermodynamic Calculation
3.2. Analysis Results of Inclusions in Tundish Samples
3.2.1. Analysis Results of Inclusions with Sizes Larger than 0.2 μm
3.2.2. Analysis Results of Inclusions with Sizes Larger Than 5 μm
3.3. Observation and Analysis Results of Inclusions with the Sizes Larger than 0.2 μm in the Continuous Casting Slabs
3.4. Observation and Analysis Results of Inclusions with the Sizes Larger than 5 μm in the Continuous Casting Slabs
4. Conclusions
- FactSage thermodynamic calculation results showed that the main types of inclusions in the tundish and the transition slabs of heats A and B were TiS, TiN, Al2O3, MnS, and their composite inclusions. The calculation results were consistent with the inclusion analysis results.
- The statistical analysis results of the inclusions with sizes larger than 0.2 μm in the 28 m transition slabs showed that only the number densities of the inclusions containing Al2O3 increased up to 8.85 times in the transition slabs from the 8th meter to 17th meter.
- The statistical analysis results of the inclusions with sizes larger than 5 μm in the 28 m transition slabs showed that the number densities of all the inclusions increased up to 10 times in the transition slabs from the 12th meter to 22nd meter, and the average sizes increased up to 1.21 times from the 14th meter to 21st meter. These results showed that the cleanliness of the transition slab was seriously reduced by a length of about 10 m from the beginning of heat B steel casting.
- The reasons for the decrease in cleanliness of the transition slabs can be attributed to: (1) secondary oxidation and nitrogen absorption caused by the exposure of the molten steel in the tundish due to the decrease in the liquid level in the tundish during the ladle exchange process. (2) The entrainment of tundish flux due to the violent fluctuation of the tundish liquid level caused by the impact of the steel pouring stream of the next heat. (3) The ladle filling sands from the next heat flowing into the molten steel.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.Y.; Wang, L.T.; Wang, X.H. Influence of Casting Speed Variation during Unsteady Continuous Casting on Non-metallic Inclusions in IF Steel Slabs. ISIJ Int. 2006, 46, 1421. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Yue, F.; Bao, Y.P.W.S. Study on Cleanliness of IF Steel First Slab. Iron Steel 2010, 45, 38. [Google Scholar]
- Zhang, Q.Y.; Wang, L.T.; Wang, X.H. Non-Metallic Inclusion Distribution in Surface Layer of IF Steel Slabs. J. Iron Steel Res. Int. 2008, 15, 70. [Google Scholar] [CrossRef]
- Deng, X.; Ji, C.; Zhu, G. Quantitative Evaluations of Surface Cleanliness in IF Steel Slabs at Unsteady Casting. Metall. Mater. Trans. B 2019, 50, 1974. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Y.; Li, S. Detection of Non-metallic Inclusions in Steel Continuous Casting Billets. Metall. Mater. Trans. B 2014, 45, 1291. [Google Scholar] [CrossRef]
- Xue, W.H.; Wu, H.Z.; Song, M.T. Research on Influence of Unstable Casting on Slab Quality. Steelmaking 2009, 25, 56. [Google Scholar]
- Wang, M.; Bao, Y.P.; Cui, H.; Wu, H.J.; Wu, W.S. Generation Mechanism of Al2O3-TiN Inclusion in IF Steel. J. Iron Steel Res. Int. 2010, 22, 29. [Google Scholar]
- Deng, Z.; Glaser, B.; Bombeck, M.A. Mechanism study of the blocking of ladle well due to sintering of filler sand. Steel Res. Int. 2016, 87, 484. [Google Scholar]
- Deng, Z.; Glaser, B.; Bombeck, M.A.; Sichen, D. Effects of temperature and holding time on the sintering of ladle filler sand with liquid steel. Steel Res. Int. 2016, 87, 921. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, R.; Fang, Q. Numerical Simulation of Transient Multiphase Flow in a Five-Strand Bloom Tundish during Ladle Change. Metals 2018, 8, 146. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.X.; Wang, X.H.; Li, L.P. Surface Cleanliness Evaluation on Transition Slabs of IF Steel and Water Modeling of Mold Level during Ladle Change Process. CAJ 2013, B, 608. [Google Scholar]
CaO | SiO2 | Al2O3 | FeO | MnO | MgO | P2O3 | (%CaO)/(%Al2O3) | (%CaO)/(%SiO2) | (%FeO) + (%MnO) |
---|---|---|---|---|---|---|---|---|---|
24.97 | 10.70 | 15.60 | 3.04 | 1.07 | 6.13 | 1.30 | 1.60 | 2.33 | 4.11 |
Heat | C | Si | Mn | P | S | Al | Als | Ti | O | N |
---|---|---|---|---|---|---|---|---|---|---|
A | 0.0011 | 0.002 | 0.102 | 0.0127 | 0.0091 | 0.0506 | 0.0503 | 0.0476 | 0.0019 | 0.0010 |
B | 0.0013 | 0.001 | 0.111 | 0.0148 | 0.0082 | 0.0573 | 0.0520 | 0.0503 | 0.0024 | 0.0016 |
Heat | ≥0.2 μm | ≥5 μm | ||
---|---|---|---|---|
Number Density, mm2 | Average Size, μm | Number Density, mm2 | Average Size, μm | |
A | 856.55 | 0.9096 | 12.55 | 7.3170 |
B | 1267.97 | 0.8153 | 2.58 | 7.9094 |
Casting Samples | Total Inclusions | Type TS | Type TN | Type M | Type A | |||||
---|---|---|---|---|---|---|---|---|---|---|
Number Density, mm2 | Average Size, μm | Number Density, mm2 | Average Size, μm | Number Density, mm2 | Average Size, μm | Number Density, mm2 | Average Size, μm | Number Density, mm2 | Average Size, μm | |
1# | 177.16 | 0.85 | 142.14 | 0.58 | 14.53 | 2.38 | 12.67 | 0.56 | 4.28 | 3.45 |
2# | 89.45 | 1.08 | 70.49 | 0.72 | 9.69 | 3.15 | 5.98 | 0.98 | 2.27 | 3.29 |
3# | 172.81 | 0.98 | 131.54 | 0.53 | 12.80 | 2.90 | 15.45 | 0.96 | 4.19 | 3.31 |
4# | 188.03 | 0.93 | 144.79 | 0.72 | 14.67 | 1.38 | 21.23 | 0.68 | 2.70 | 3.33 |
5# | 275.71 | 0.86 | 222.34 | 0.77 | 19.51 | 1.82 | 27.95 | 0.59 | 4.11 | 2.65 |
6# | 229.55 | 0.86 | 189.74 | 0.71 | 13.37 | 2.25 | 20.53 | 0.51 | 4.42 | 3.87 |
7# | 248.58 | 1.01 | 194.61 | 0.81 | 23.07 | 2.23 | 19.31 | 0.67 | 9.87 | 3.22 |
8# | 277.80 | 0.74 | 220.18 | 0.54 | 20.63 | 1.59 | 17.26 | 0.45 | 16.59 | 2.50 |
9# | 223.06 | 0.87 | 184.84 | 0.54 | 12.23 | 2.51 | 6.12 | 0.44 | 17.41 | 3.13 |
10# | 191.61 | 0.94 | 146.36 | 0.55 | 17.44 | 2.27 | 5.96 | 0.39 | 18.98 | 2.73 |
11# | 222.88 | 0.99 | 164.54 | 0.62 | 20.34 | 2.42 | 16.43 | 0.43 | 19.72 | 2.93 |
12# | 233.84 | 0.80 | 189.32 | 0.50 | 14.05 | 2.18 | 9.02 | 0.37 | 20.10 | 2.68 |
13# | 285.04 | 0.78 | 221.05 | 0.57 | 16.90 | 1.97 | 13.05 | 0.40 | 12.63 | 3.22 |
14# | 222.27 | 0.85 | 182.75 | 0.54 | 16.59 | 2.48 | 4.15 | 0.39 | 15.50 | 2.64 |
15# | 181.92 | 1.08 | 140.54 | 0.65 | 19.34 | 2.12 | 4.27 | 0.46 | 15.52 | 3.72 |
16# | 142.24 | 1.13 | 100.53 | 0.61 | 19.89 | 2.38 | 6.42 | 0.42 | 13.69 | 3.29 |
17# | 138.07 | 1.09 | 101.42 | 0.57 | 17.54 | 2.71 | 5.40 | 0.47 | 10.79 | 3.43 |
18# | 187.94 | 0.91 | 150.35 | 0.57 | 15.13 | 2.33 | 7.33 | 0.52 | 9.93 | 3.42 |
19# | 208.40 | 0.84 | 158.82 | 0.57 | 33.61 | 0.29 | 8.40 | 0.38 | 9.24 | 4.16 |
20# | 101.07 | 1.37 | 65.44 | 0.57 | 14.05 | 3.03 | 8.06 | 0.43 | 9.68 | 3.81 |
21# | 76.18 | 1.13 | 48.31 | 0.63 | 16.85 | 1.93 | 3.37 | 0.47 | 6.74 | 2.91 |
22# | 188.23 | 0.95 | 148.23 | 0.53 | 13.72 | 3.00 | 11.37 | 0.44 | 14.12 | 3.69 |
23# | 173.06 | 0.98 | 124.93 | 0.59 | 17.01 | 2.95 | 16.60 | 0.42 | 6.43 | 3.94 |
24# | 150.03 | 0.88 | 104.33 | 0.57 | 15.95 | 1.56 | 18.32 | 0.47 | 9.70 | 3.40 |
25# | 195.27 | 0.86 | 147.70 | 0.59 | 20.17 | 1.75 | 17.93 | 0.48 | 6.47 | 4.09 |
26# | 220.46 | 0.76 | 191.95 | 0.53 | 17.47 | 2.50 | 5.29 | 0.36 | 4.14 | 3.96 |
27# | 205.69 | 0.85 | 170.90 | 0.52 | 14.44 | 2.88 | 10.50 | 0.37 | 8.53 | 4.46 |
28# | 198.21 | 1.15 | 157.76 | 0.73 | 22.90 | 3.83 | 7.38 | 0.60 | 7.89 | 4.33 |
Casting Samples | Total Inclusions | Type A | Type TN | Type A+TN | ||||
---|---|---|---|---|---|---|---|---|
Number Density, mm2 | Average Size, μm | Number Density, mm2 | Average Size, μm | Number Density, mm2 | Average Size, μm | Number Density, mm2 | Average Size, μm | |
1# | 5.75 | 6.59 | 0.55 | 9.37 | 4.42 | 6.10 | 0.57 | 7.70 |
2# | 4.53 | 6.79 | 0.52 | 9.50 | 3.25 | 6.06 | 0.55 | 7.93 |
3# | 3.47 | 6.72 | 0.64 | 8.44 | 2.13 | 5.96 | 0.56 | 7.45 |
4# | 4.39 | 6.32 | 0.60 | 7.81 | 2.87 | 5.77 | 0.68 | 6.38 |
5# | 3.34 | 6.39 | 0.36 | 8.40 | 2.24 | 5.87 | 0.57 | 7.28 |
6# | 2.72 | 6.72 | 0.51 | 8.36 | 1.57 | 5.77 | 0.44 | 7.33 |
7# | 2.75 | 6.75 | 0.62 | 7.92 | 1.35 | 6.17 | 0.55 | 6.50 |
8# | 4.93 | 6.11 | 0.65 | 5.81 | 2.64 | 6.24 | 1.14 | 6.04 |
9# | 3.65 | 6.71 | 0.71 | 9.54 | 1.60 | 5.66 | 1.16 | 6.48 |
10# | 5.71 | 6.03 | 0.72 | 8.07 | 2.94 | 5.53 | 1.57 | 5.76 |
11# | 6.88 | 6.12 | 0.92 | 7.30 | 4.26 | 5.82 | 1.08 | 6.39 |
12# | 9.76 | 6.39 | 0.95 | 8.17 | 5.97 | 5.94 | 2.34 | 6.34 |
13# | 13.76 | 6.55 | 1.44 | 7.33 | 8.80 | 6.21 | 2.59 | 6.85 |
14# | 16.04 | 6.9 | 1.79 | 7.86 | 10.18 | 6.59 | 2.73 | 7.51 |
15# | 16.91 | 7.17 | 1.61 | 7.69 | 11.58 | 6.95 | 2.73 | 7.96 |
16# | 15.74 | 7.08 | 1.96 | 7.94 | 10.45 | 6.76 | 2.58 | 7.84 |
17# | 15.25 | 7.41 | 1.53 | 8.21 | 10.62 | 7.04 | 2.40 | 8.59 |
18# | 8.68 | 6.56 | 0.99 | 7.67 | 5.63 | 6.15 | 1.61 | 7.03 |
19# | 15.75 | 7.69 | 1.16 | 8.55 | 11.08 | 7.43 | 2.35 | 8.77 |
20# | 9.96 | 6.86 | 1.15 | 8.08 | 5.94 | 6.42 | 2.45 | 7.14 |
21# | 10.7 | 6.83 | 0.95 | 8.26 | 6.61 | 6.42 | 2.64 | 7.30 |
22# | 12.11 | 6.76 | 0.90 | 7.72 | 7.83 | 6.39 | 2.90 | 7.49 |
23# | 4.71 | 6.71 | 0.68 | 8.54 | 2.59 | 5.86 | 0.79 | 6.50 |
24# | 4.04 | 6.19 | 0.54 | 7.61 | 2.61 | 5.82 | 0.65 | 6.22 |
25# | 2.42 | 6.23 | 0.45 | 7.75 | 1.26 | 5.60 | 0.41 | 6.14 |
26# | 2.79 | 6.63 | 0.59 | 8.13 | 1.43 | 5.72 | 0.53 | 6.52 |
27# | 7.8 | 6.48 | 0.56 | 8.22 | 5.17 | 6.11 | 1.68 | 6.92 |
28# | 6.86 | 6.37 | 0.71 | 7.97 | 4.52 | 5.95 | 1.26 | 6.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, M.; Zhi, J.; Fan, Z.; Wang, R.; Chen, Y.; Yang, J. Influence of Ladle Exchange on Inclusions in Transition Slabs of Continuous Casting for Automotive Exposed Panel Steel. Metals 2023, 13, 404. https://doi.org/10.3390/met13020404
Ren M, Zhi J, Fan Z, Wang R, Chen Y, Yang J. Influence of Ladle Exchange on Inclusions in Transition Slabs of Continuous Casting for Automotive Exposed Panel Steel. Metals. 2023; 13(2):404. https://doi.org/10.3390/met13020404
Chicago/Turabian StyleRen, Miaomiao, Jianjun Zhi, Zhengjie Fan, Ruizhi Wang, Yanli Chen, and Jian Yang. 2023. "Influence of Ladle Exchange on Inclusions in Transition Slabs of Continuous Casting for Automotive Exposed Panel Steel" Metals 13, no. 2: 404. https://doi.org/10.3390/met13020404
APA StyleRen, M., Zhi, J., Fan, Z., Wang, R., Chen, Y., & Yang, J. (2023). Influence of Ladle Exchange on Inclusions in Transition Slabs of Continuous Casting for Automotive Exposed Panel Steel. Metals, 13(2), 404. https://doi.org/10.3390/met13020404