Corrosion of Titanium Alloys Anodized Using Electrochemical Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Microstructural Characterization
2.3. Anodizing Process
2.4. Electrochemical Measurements
3. Results
3.1. SEM Microstructural Analysis
3.2. SEM Surface Analysis of Anodized Alloys
3.3. SEM Cross-Section Analysis of Anodized Alloys
3.4. Cyclic Potentiodynamic Polarization
3.5. Electrochemical Impedance Spectroscopy
4. Discussion
5. Conclusions
- The anodized Ti-6Al-2Sn-4Zr-2Mo alloys presented the best properties against corrosion, as analyzed by the electrochemical techniques employed in this research work. This behavior is related to Mo and Zr presence in the alloy and the anodized forms.
- The anodizing H2SO4 solution showed a smaller porosity than the H3PO4 anodizing solution. However, the lower porosity helped to prevent ion penetration by capillarity.
- The samples of both alloys anodized in H3PO4 presented the biggest thickness measurement by SEM of the anodization with a maximum value of 2.08 µm. The presence of oxygen was higher in the oxide layer.
- The sample of Ti-6Al-2Sn-4Zr-2Mo presented the highest oxide growth of all, at 2.53 × 10−7 m, when it was anodized in H3PO4 and exposed to H2SO4. Meanwhile, the Ti-6Al-4V presented the lowest oxide growth layer (3.57 × 10−9 m).
- The H2SO4-anodized sample for Ti-6Al-4V did not reach the minimum specifications to accomplish the thickness required for AMS2487B for anodized aeronautical titanium. Furthermore, both Ti-6Al-4V anodized samples presented the imperfections of high roughness and lack of adherence.
- For characterization of the CPP, the alloys anodized with H3PO4 presented lower icorr, meaning a lower corrosion kinetic. Additionally, both H2SO4-anodized samples exposed to NaCl presented current densities similar to uncoated samples, meaning that the Cl− could easily penetrate the anodizing layer.
- The samples of Ti-6Al-4V presented high corrosion rate values (between 0.084 and 0.991 mpy); meanwhile, Ti-6Al-2Sn-4Zr-2Mo showed the lowest corrosion rate values of all the systems in NaCl and H2SO4 (0.0014 and 0.022 mpy).
- All the anodized samples studied by EIS were governed by a diffusion process represented by the Warburg element. The diffusion occurred after the porous layer finished in the compact oxide layer of anodization, meaning that the anodization protects the titanium from the electrolyte.
- The results obtained by CPP and EIS converged to characterize the anodized samples, where the results showed that Ti-6Al-2Sn-4Zr-2Mo anodized in H3PO4 presented the best properties against corrosion from both techniques. Furthermore, the results matched with the SEM characterization where the anodized samples presented the higher thickness (1.62 µm on average).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, V.M.C.A.; Aguiar, C.; Vazquez, A.M.; Robin, A.; Barboza, M.J.R. Improving Corrosion Resistance of Ti–6Al–4V Alloy through Plasma-Assisted PVD Deposited Nitride Coatings. Corros. Sci. 2014, 88, 317–327. [Google Scholar] [CrossRef]
- Diamanti, M.V.; Pedeferri, M.P. Effect of Anodic Oxidation Parameters on the Titanium Oxides Formation. Corros. Sci. 2007, 49, 939–948. [Google Scholar] [CrossRef]
- Minagar, S.; Wang, J.; Berndt, C.C.; Ivanova, E.P.; Wen, C. Cell Response of Anodized Nanotubes on Titanium and Titanium Alloys. J. Biomed. Mater. Res. Part A 2013, 101, 2726–2739. [Google Scholar] [CrossRef] [PubMed]
- Hanawa, T. Metal Ion Release from Metal Implants. Mater. Sci. Eng. C 2004, 24, 745–752. [Google Scholar] [CrossRef]
- Jiang, Z.; Norby, T.; Middleton, H. Evaluation of Metastable Pitting on Titanium by Charge Integration of Current Transients. Corros. Sci. 2010, 52, 3158–3161. [Google Scholar] [CrossRef]
- Li, S.; Yao, W.; Liu, J.; Yu, M.; Wu, L.; Ma, K. Study on Anodic Oxidation Process and Property of Composite Film Formed on Ti–10V–2Fe–3Al Alloy in SiC Nanoparticle Suspension. Surf. Coatings Technol. 2015, 277, 234–241. [Google Scholar] [CrossRef]
- Peters, M.; Kumpfert, J.; Ward, C.H.; Leyens, C. Titanium Alloys for Aerospace Applications. Adv. Eng. Mater. 2003, 5, 419–427. [Google Scholar] [CrossRef]
- Gloria, A.; Montanari, R.; Richetta, M.; Varone, A. Alloys for Aeronautic Applications: State of the Art and Perspectives. Metals 2019, 9, 662. [Google Scholar] [CrossRef] [Green Version]
- Song, H.J.; Kim, M.K.; Jung, G.C.; Vang, M.S.; Park, Y.J. The Effects of Spark Anodizing Treatment of Pure Titanium Metals and Titanium Alloys on Corrosion Characteristics. Surf. Coat. Technol. 2007, 201, 8738–8745. [Google Scholar] [CrossRef]
- Kim, H.Y.; Miyazaki, S. Martensitic Transformation and Superelastic Properties of Ti-Nb Base Alloys. Mater. Trans. 2015, 56, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Martínez, C.; Guerra, C.; Silva, D.; Cubillos, M.; Briones, F.; Muñoz, L.; Páez, M.A.; Aguilar, C.; Sancy, M. Effect of Porosity on Mechanical and Electrochemical Properties of Ti–6Al–4V Alloy. Electrochim. Acta 2020, 338, 135858. [Google Scholar] [CrossRef]
- Castany, P.; Gordin, D.M.; Drob, S.I.; Vasilescu, C.; Mitran, V.; Cimpean, A.; Gloriant, T. Deformation Mechanisms and Biocompatibility of the Superelastic Ti–23Nb–0.7Ta–2Zr–0.5N alloy. Shape Mem. Superelasticity 2016, 2, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Almeraya-Calderón, F.; Jáquez-Muñoz, J.M.; Lara-Banda, M.; Zambrano-Robledo, P.; Cabral-Miramontes, J.A.; Lira-Martínez, A.; Estupinán-López, F.; Tiburcio, C.G. Corrosion Behavior of Titanium and Titanium Alloys in Ringer śSolution. Int. J. Electrochem. Sci. 2022, 17. [Google Scholar] [CrossRef]
- Martínez-Villafañe, A.; Almeraya-Calderón, M.F.; Gaona-Tiburcio, C.; Gonzalez-Rodriguez, J.G.; Porcayo-Calderón, J. High-Temperature Degradation and Protection of Ferritic and Austenitic Steels in Steam Generators. J. Mater. Eng. Perform. 1997, 7, 108–113. [Google Scholar] [CrossRef]
- Loch, J.; Łukaszczyk, A.; Vignal, V.; Krawiec, H. Corrosion Behaviour of Ti6Al4V and TiMo10Zr4 Alloys in theRinger’s Solution: Effect of PH and Plastic Strain. Solid State Phenom. 2015, 227, 435–438. [Google Scholar] [CrossRef]
- Khulief, Z.T.; Abdulameer, M. Corrosion Behavior of Different Types Titanium Alloys for Biomedical Applications. AIP Conf. Proc. 2022, 2450, 020023. [Google Scholar] [CrossRef]
- Xu, Y.F.; Xiao, Y.F.; Yi, D.Q.; Liu, H.Q.; Wu, L.; Wen, J. Corrosion Behavior of Ti–Nb–Ta–Zr–Fe Alloy for Biomedical Applications inRinger’s Solution. Trans. Nonferrous Met. Soc. China 2015, 25, 2556–2563. [Google Scholar] [CrossRef]
- Rao, B.M.; Torabi, A.; Varghese, O.K. Anodically Grown Functional Oxide Nanotubes and Applications. MRS Commun. 2016, 6, 375–396. [Google Scholar] [CrossRef]
- Sul, Y.T.; Johansson, C.B.; Petronis, S.; Krozer, A.; Jeong, Y.; Wennerberg, A.; Albrektsson, T. Characteristics of the Surface Oxides on Turned and Electrochemically Oxidized Pure Titanium Implants up to Dielectric Breakdown: The Oxide Thickness, Micropore Configurations, Surface Roughness, Crystal Structure and Chemical Composition. Biomaterials 2002, 23, 491–501. [Google Scholar] [CrossRef]
- Wang, Z.B.; Hu, H.X.; Zheng, Y.G. Synergistic Effects of Fluoride and Chloride on General Corrosion Behavior of AISI 316 Stainless Steel and Pure Titanium in H2SO4 Solutions. Corros. Sci. 2018, 130, 203–217. [Google Scholar] [CrossRef]
- Alam, M.J.; Cameron, D.C. Preparation and Characterization of TiO2 Thin Films by Sol-Gel Method. J. Sol-Gel Sci. Technol. 2002, 25, 137–145. [Google Scholar] [CrossRef]
- Diamanti, M.V.; Codeluppi, S.; Cordioli, A.; Pedeferri, M.P. Effect of Thermal Oxidation on Titanium Oxides’ Characteristics. J. Exp. Nanosci. 2009, 4, 365–372. [Google Scholar] [CrossRef]
- Löbl, P.; Huppertz, M.; Mergel, D. Nucleation and Growth in TiO2 Films Prepared by Sputtering and Evaporation. Thin Solid Films 1994, 251, 72–79. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, Y.; Gao, R.; Yang, J.; Wei, K.; Tang, D.; Fu, T. The Effect of Potential on Surface Characteristic and Corrosion Resistance of Anodic Oxide Film Formed on Commercial Pure Titanium at the Potentiodynamic-Aging Mode. Materials 2019, 12, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanan, R.; Seshadri, S.K. Phosphoric Acid Anodization of Ti–6Al–4V—Structural and Corrosion Aspects. Corros. Sci. 2007, 49, 542–558. [Google Scholar] [CrossRef]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Chacón-Nava, J.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.M.; Delgado, A.D.; Flores-De Los Rios, J.P.; Bocchetta, P.; Almeraya-Calderón, F. Electrochemical Corrosion of Titanium and Titanium Alloys Anodized in H2SO4 and H3PO4 Solutions. Coatings 2022, 12, 325. [Google Scholar] [CrossRef]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Olguín-Coca, J.; López-Léon, L.D.; De Los Rios, J.P.F.; Almeraya-Calderón, F. Electrochemical Noise Analysis of the Corrosion of Titanium Alloys in NaCl and H2SO4 Solutions. Metals 2021, 11, 105. [Google Scholar] [CrossRef]
- Gaona-Tiburcio, C.; Montoya, R.M.; Cabral, M.J.A.; Estupiñan, L.F.; Zambrano, R.P.; Orozco, C.R.; Chacon-Nava, J.G.; Baltazar, Z.M.A.; Almeraya-Calderon, F. Corrosion resistance of multilayer coatings deposited by PVD on inconel 718 using electrochemical impedance spectroscopy technique. Coatings 2020, 10, 521. [Google Scholar] [CrossRef]
- Jáquez-Munõz, J.M.; Gaona-Tiburcio, C.; Cabral, J.A.; Lara-Banda, M.; Estupinãn-López, F.H.; Zambrano, P.R.; Almeraya-Calderón, F. Corrosion Behaviour of Titanium Alloys Using Electrochemical Noise. ECS Trans. 2021, 101, 1. [Google Scholar]
- Samaniego-Gámez, O.; Almeraya-Calderón, F.; Chacón-Nava, J.; Maldonado-Bandala, E.; Nieves-Mendoza, D.; Flores-De los Rios, J.P.; Jáquez-Muñoz, J.M.; Delgado, A.D.; Gaona-Tiburcio, C. Corrosion Behavior of Passivated CUSTOM450 and AM350 Stainless Steels For Aeronautical Applications. Metals 2022, 12, 666. [Google Scholar] [CrossRef]
- Jaroenworaluck, A.; Regonini, D.; Bowen, C.R.; Stevens, R.; Allsopp, D. Macro, Micro and Nanostructure of TiO2 Anodised Films Prepared in a Fluorine-Containing Electrolyte. J. Mater. Sci. 2007, 42, 6729–6734. [Google Scholar] [CrossRef]
- Regonini, D.; Bowen, C.R.; Jaroenworaluck, A.; Stevens, R. A Review of Growth Mechanism, Structure and Crystallinity of Anodized TiO2 Nanotubes. Mater. Sci. Eng. R Rep. 2013, 74, 377–406. [Google Scholar] [CrossRef] [Green Version]
- Diaz, E.F.; Gonzalez-Rodriguez, J.G.; Martinez-Villafañe, A.; Gaona-Tiburcio, C. H2S Corrosion Inhibition of an Ultra High Strength Pipeline by Carboxyethyl-Imidazoline. J. Appl. Electrochem. 2010, 40, 1633–1640. [Google Scholar] [CrossRef]
- Samaniego-Gámez, P.; Almeraya-Calderón, F.; Martin, U.; Ress, J.; Gaona-Tiburcio, C.; Silva-Vidaurri, L.; Ca-bral-Miramontes, J.; Bastidas, J.M.; Chacón-Nava, J.G.; Bastidas, D.M. Efecto del tratamiento de sellado en el comporta-miento frente a corrosión de la aleación anodizada de aluminio-litio AA2099. Rev. Metal. 2020, 56, e180. [Google Scholar] [CrossRef]
- Socorro-Perdomo, P.P.; Florido-Suárez, N.R.; Mirza-Rosca, J.C.; Saceleanu, M.V. EIS Characterization of Ti Alloys in Relation to Alloying Additions of Ta. Materials 2022, 15, 476. [Google Scholar] [CrossRef]
- Chávez-Díaz, M.P.; Luna-Sánchez, R.M.; Vazquez-Arenas, J.; Lartundo-Rojas, L.; Hallen, J.M.; Cabrera-Sierra, R. XPS and EIS Studies to Account for the Passive Behavior of the Alloy Ti-6Al-4V in Hank’s Solution. J. Solid State Electrochem. 2019, 23, 3187–3196. [Google Scholar] [CrossRef]
- Feizi Mohazzab, B.; Jaleh, B.; Kakuee, O.; Fattah-alhosseini, A. Formation of Titanium Carbide on the Titanium Surface Using Laser Ablation in N-Heptane and Investigating Its Corrosion Resistance. Appl. Surf. Sci. 2019, 478, 623–635. [Google Scholar] [CrossRef]
- Ibriş, N.; Mirza Rosca, J.C. EIS Study of Ti and Its Alloys in Biological Media. J. Electroanal. Chem. 2002, 526, 53–62. [Google Scholar] [CrossRef]
- Fakhr Nabavi, H.; Aliofkhazraei, M. Morphology, Composition and Electrochemical Properties of Bioactive-TiO2/HA on CP-Ti and Ti6Al4V Substrates Fabricated by Alkali Treatment of Hybrid Plasma Electrolytic Oxidation Process (Estimation of Porosity from EIS Results). Surf. Coat. Technol. 2019, 375, 266–291. [Google Scholar] [CrossRef]
- Liu, C.; Bi, Q.; Leyland, A.; Matthews, A. An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part II.: EIS Interpretation of Corrosion Behaviour. Corros. Sci. 2003, 45, 1257–1273. [Google Scholar] [CrossRef]
- Kulova, T.; Gryzlov, D.; Skundin, A.; Gavrilin, I.; Martynova, I.; Kudryashova, Y. Causes of Germanium Phosphide Degradation under Prolonged Cycling. EIS Study. Int. J. Electrochem. Sci. 2022, 17, 220224. [Google Scholar] [CrossRef]
- Deng, C.; Zhao, Z.; Hu, H.; Li, X.; Luo, W. Comparisons of I- and Cl- Concentrations on the Corrosion Behavior of TA4 Titanium Alloy in Azeotropic Acetic Acid Solutions. J. Phys. Conf. Ser. 2022, 2368, 012009. [Google Scholar] [CrossRef]
- ASTM E3-95; Standard Practice for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 1995.
- ASTM E407-07; Standard Practice for Microetching Metals and Alloys. ASTM International: West Conshohocken, PA, USA, 2011.
- AMS2487; Anodic Treatment of Titanium and Titanium Alloys Solution pH 12.4 Maximum. SAE International: Warrendaly, PA, USA, 2018.
- ASTM G5-14; Standard Reference Test Method for Making Potentiodynamic Anodic Polarization. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM G61-86; Standards Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM G106-15; Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements. ASTM International: West Conshohocken, PA, USA, 2015.
- Sam Froes, F.H.; Qian, M.; Niinomi, M. An Introduction to Titanium in Consumer Applications. In Titanium for Consumer Applications—Real World Use of Titanium; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Pałka, K.; Pokrowiecki, R.; Krzywicka, M. Porous Titanium Materials and Applications. In Titanium for Consumer Applications—Real World Use of Titanium; Elsevier: Amsterdam, The Netherlands, 2019; pp. 27–75. [Google Scholar] [CrossRef]
- Esmailzadeh, S.; Aliofkhazraei, M.; Sarlak, H. Interpretation of Cyclic Potentiodynamic Polarization Test Results for Study of Corrosion Behavior of Metals: A Review. Prot. Met. Phys. Chem. Surf. 2018, 54, 976–989. [Google Scholar] [CrossRef]
- Santiago, G.; Baltazar, M.A.; Galván, R.; López, L.; Zapata, F.; Zambrano, P.; Gaona, C.; Almeraya, F. Electrochemical Evalu-ation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. Int. J. Electrochem. Sci. 2016, 11, 4850–4864. [Google Scholar] [CrossRef]
- Kumar, A. Anodization of Titanium Alloy (Grade 5) to Obtain Nanoporous Surface Using Sulfuric Acid Electrolyte. IETE J. Res. 2022, 68, 3855–3861. [Google Scholar] [CrossRef]
- Cabral Miramontes, J.A.; Barceinas Sánchez, J.D.O.; Almeraya Calderón, F.; Martínez Villafañe, A.; Chacón Nava, J.G. Effect of Boron Additions on Sintering and Densification of a Ferritic Stainless Steel. J. Mater. Eng. Perform. 2010, 19, 880–884. [Google Scholar] [CrossRef]
- Jaquez-Muñoz, J.; Gaona-Tiburcio, C.; Lira-Martinez, A.; Zambrano-Robledo, P.; Maldonado-Bandala, E.; Samaniego-Gamez, O.; Nieves-Mendoza, D.; Olguin-Coca, J.; Estupiñan-Lopez, F.; Almeraya-Calderon, F. Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications. Metals 2021, 11, 1002. [Google Scholar] [CrossRef]
- Maldonado-Bandala, E.; Jiménez-Quero, V.; Olguin-Coca, J.; Lizarraga, L.G.; Baltazar-Zamora, M.A.; Ortiz, A.; Almeraya, C.F.; Zambrano, R.P.; Gaona-Tiburcio, C. Electrochemical Characterization of Modified Concretes with Sugar Cane Bagasse Ash. Int. J. Electrochem. Sci. 2011, 6, 4915–4926. [Google Scholar]
- Beavers, J.A.; Durr, C.L.; Thompson, N.G. Unique Interpretations of Potentiodynamic Polarization Technique. In Proceedings of the NACE—International Corrosion Conference Series, San Diego, CA, USA, 22–27 March 1998; Volume 1998. [Google Scholar]
- Cabral-Miramontes, J.A.; Bastidas, D.M.; Baltazar, M.A.; Zambrano-Robledo, P.; Bastidas, J.M.; Almeraya-Calderón, F.M.; Gaona-Tiburcio, C. Corrosion Behavior of Zn-TiO2 and Zn-ZnO Electrodeposited Coatings in 3.5% NaCl Solution. Int. J. Electrochem. Sci. 2019, 14, 4226–4239. [Google Scholar] [CrossRef]
- Ramgopal, T.; Schmutz, P.; Frankel, G.S. Electrochemical Behavior of Thin Film Analogs of Mg(Zn, Cu, Al)2. J. Electrochem. Soc. 2001, 148, B348. [Google Scholar] [CrossRef] [Green Version]
- Lara-Banda, M.; Gaona-Tiburcio, C.; Zambrano-Robledo, P.; Delgado-E, M.; Cabral-Miramontes, J.A.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Estupiñan-López, F.; Chacón-Nava, J.G.; Almeraya-Calderón, F. Alternative to Nitric Acid Passivation of 15-5 and 17-4PH Stainless Steel Using Electrochemical Techniques. Materials 2020, 13, 2836. [Google Scholar] [CrossRef]
- Montoya-Rangel, M.; de Oca, N.G.M.; Gaona-Tiburcio, C.; Colás, R.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Chacón-Nava, J.; Almeraya-Calderón, F. Electrochemical Noise Measurements of Advanced High-Strength Steels in Different Solutions. Metals 2020, 10, 1232. [Google Scholar] [CrossRef]
- Ispas, A.; Bund, A.; Vrublevsky, I. Investigations on Current Transients in Porous Alumina Films during Re-Anodizing Using the Electrochemical Quartz Crystal Microbalance. J. Solid State Electrochem. 2010, 14, 2121–2128. [Google Scholar] [CrossRef]
- Huang, Y.S.; Shih, T.S.; Chou, J.H. Electrochemical Behavior of Anodized AA7075-T73 Alloys as Affected by the Matrix Structure. Appl. Surf. Sci. 2013, 283, 249–257. [Google Scholar] [CrossRef]
- Zaraska, L.; Gawlak, K.; Gurgul, M.; Dziurka, M.; Nowak, M.; Gilek, D.; Sulka, G.D. Influence of Anodizing Conditions on Generation of Internal Cracks in Anodic Porous Tin Oxide Films Grown in NaOH Electrolyte. Appl. Surf. Sci. 2018, 439, 672–680. [Google Scholar] [CrossRef]
- Gawalt, E.S.; Brault-Rios, K.; Dixon, M.S.; Tang, D.C.; Schwartz, J. Enhanced Bonding of Organometallics to Titanium via a Titanium(III) Phosphate Interface. Langmuir 2001, 17, 6743–6745. [Google Scholar] [CrossRef]
- Khudhair, D.; Bhatti, A.; Li, Y.; Hamedani, H.A.; Garmestani, H.; Hodgson, P.; Nahavandi, S. Anodization Parameters Influencing the Morphology and Electrical Properties of TiO2 Nanotubes for Living Cell Interfacing and Investigations. Mater. Sci. Eng. C 2016, 59, 1125–1142. [Google Scholar] [CrossRef] [PubMed]
- El-Taib Heakal, F.; Mogoda, A.S.; Mazhar, A.A.; El-Basiouny, M.S. Kinetic Studies on the Dissolution of the Anodic Oxide Film on Titanium in Phosphoric Acid Solutions. Corros. Sci. 1987, 27, 453–462. [Google Scholar] [CrossRef]
- Parse, H.; Patil, I.M.; Swami, A.S.; Kakade, B.A. TiO2-Decorated Titanium Carbide MXene Co-Doped with Nitrogen and Sulfur for Oxygen Electroreduction. ACS Appl. Nano Mater. 2021, 4, 1094–1103. [Google Scholar] [CrossRef]
- Martinez, A.l.; Flamini, D.o.; Saidman, S.B. Corrosion Resistance Improvement of Ti-6Al-4V Alloy by Anodization in the Presence of Inhibitor Ions. Trans. Nonferrous Met. Soc. China 2022, 32, 1896–1909. [Google Scholar] [CrossRef]
- Ramirez, A.; Gonzalez, J.; Campillo, B.; Gaona, T.; Dominguez, P.; Lezama, L.; Chacón, N.; Neri, F.; Martinez, V. An Electrochemical Study of the Corrosion Behavior of a Dual Phase Steel in 0.5m H2SO4. Int. J. Electrochem. Sci. 2010, 5, 1786–1798. [Google Scholar]
- Fouda, M.E.; Allagui, A.; Elwakil, A.S.; Das, S.; Psychalinos, C.; Radwan, A.G. Nonlinear charge-voltage relationship in constant phase element. Int. J. Electron. Commun. AEÜ 2020, 177, 153104. [Google Scholar] [CrossRef]
- Gomes, M.P.; Costa, I.; Pebere, N.; Rossi, J.L.; Tribollet, B.; Vivier, V. On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy. Electrochim. Acta 2019, 306, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Gateman, S.M.; Gharbi, O.; Gomes de Melo, H.; Ngo, K.; Turmine, M.; Vivier, V. On the use of a constant phase element (CPE) in electrochemistry. Curr. Opin. Electrochem. 2022, 36, 101133. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications, 3rd ed.; John Wiley & Sons, Inc: New York, NY, USA, 2018; pp. 175–478. [Google Scholar]
- Macdonald, J.R. Frequency response of inifield dielectric and conductive systems involving an exponetial distribution of activation energy. J. Appl. Phys. 1985, 58, 1955. [Google Scholar] [CrossRef]
- Macdonald, J.R. Generalizations of “universal dielectric response” and a general distribution-of-activation-energies model for dielectric and conductive systems. J. App. Phys. 1985, 58, 1971. [Google Scholar] [CrossRef]
- Mulder, W.H.; Sluyters, J.H.; Pajkossy, T.; Nyikos, L. Tafel current at fractal electrodes: Connection with admittance spectra. J. Electroanal. Chem. 1990, 285, 103. [Google Scholar] [CrossRef]
- Kim, C.; Pyun, S.; Kim, J. An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations, Electrochim. Acta 2003, 48, 3455. [Google Scholar] [CrossRef]
- Schiller, C.A.; Strunz, W. The evaluation of experimental dielectric data of barrier coatings by means of different models. Electrochim. Acta 2001, 46, 3619. [Google Scholar] [CrossRef]
- Córdoba-Torres, P. Relationship between constant-phase element (CPE) parameters and physical properties of films with a distributed resistivity. Electrochim. Acta 2017, 225, 592. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, Vol. 21, Page 6578 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.T.; V V, A.T.; Terada-Nakaishi, M.; Chen, P.; Hanawa, T.; Nandakumar, A.K.; Subramanian, B. Zirconium-Based Metallic Glass and Zirconia Coatings to Inhibit Bone Formation on Titanium. Biomed. Mater. 2020, 15, 065019. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mahobia, G.S.; Mandal, S.; Singh, V.; Chattopadhyay, K. Enhanced Corrosion Resistance of the Surface Modified Ti-13Nb-13Zr Alloy by Ultrasonic Shot Peening. Corros. Sci. 2021, 189, 109597. [Google Scholar] [CrossRef]
- Radovanović, M.B.; Tasić, Ž.Z.; Simonović, A.T.; Petrović Mihajlović, M.B.; Antonijević, M.M. Corrosion Behavior of Titanium in Simulated Body Solutions with the Addition of Biomolecules. ACS Omega 2020, 5, 12768–12776. [Google Scholar] [CrossRef]
- Vasilescu, C.; Drob, S.I.; Osiceanu, P.; Moreno, J.M.C.; Prodana, M.; Ionita, D.; Demetrescu, I.; Marcu, M.; Popovici, I.A.; Vasilescu, E. Microstructure, Surface Characterization, and Electrochemical Behavior of New Ti-Zr-Ta-Ag Alloy in Simulated Human Electrolyte. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017, 48, 513–523. [Google Scholar] [CrossRef]
- Munirathinam, B.; Neelakantan, L. Titania Nanotubes from Weak Organic Acid Electrolyte: Fabrication, Characterization and Oxide Film Properties. Mater. Sci. Eng. C 2015, 49, 567–578. [Google Scholar] [CrossRef]
- Cui, W.F.; Jin, L.; Zhou, L. Surface Characteristics and Electrochemical Corrosion Behavior of a Pre-Anodized Microarc Oxidation Coating on Titanium Alloy. Mater. Sci. Eng. C 2013, 33, 3775–3779. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Y. Unique Constant Phase Element Behavior of the Electrolyte–Graphene Interface. Nanomaterials 2019, 9, 923. [Google Scholar] [CrossRef] [Green Version]
- Baltazar-Zamora, M.A.; Bandala, E.M.; Tello, M.U.; Hurtado, G.S.; Coca, F.J.; Cedano, A.O.; Barrios, C.P.; Nuñez, R.E.; Zambrano, P.; Tiburcio, C.; et al. Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. Int. J. Electrochem. Sci. 2012, 7, 2997–3007. [Google Scholar]
- Sadek, A.Z.; Zheng, H.; Latham, K.; Wlodarski, W.; Kalantar-Zadeh, K. Anodization of Ti Thin Film Deposited on ITO. Langmuir 2009, 25, 509–514. [Google Scholar] [CrossRef]
- Mor, G.K.; Varghese, O.K.; Paulose, M.; Mukherjee, N.; Grimes, C.A. Fabrication of Tapered, Conical-Shaped Titania Nanotubes. J. Mater. Res. 2003, 18, 2588–2593. [Google Scholar] [CrossRef]
- Galván-Martínez, R.; Cabrera-de la Cruz, D.; Contreras, A.; Orozco-Cruz, R. A novel experimental arrangement for corrosión study of X60 pipeline steel weldments at turbulent flow conditions. Corros. Eng. Sci. Technol. 2016, 5, 400–407. [Google Scholar] [CrossRef]
- Galván-Martinez, R.; Orozco-Cruz, R.; Torres-Sanchez, R.; Martinez, E.A. Corrosion study of the X52 steel immersed in seawater with a corrosion inhibitor using a rotating cylinder electrode. Mater. Corros. 2010, 61, 872–876. [Google Scholar] [CrossRef]
Elements | Ti-6Al-2Sn-4Zr-2Mo | Ti-6Al-4V |
---|---|---|
Ti | 84.65 ± 0.19 | 87.71 ± 0.36 |
Al | 6.75 ± 0.20 | 7.14 ± 0.37 |
Sn | 2.08 ± 0.01 | – |
V | – | 4.03 ± 0.08 |
Zr | 4.18 ± 0.01 | – |
Mo | 1.99 ± 0.008 | – |
Sample | Ecorr | icorr | Hysteresis | Range | Passive Breakdown (V) | Corrosion Rate (mpy) | —βc (V/decade) | βa (V/decade) | β (v) | Rp (Ω·cm2) |
---|---|---|---|---|---|---|---|---|---|---|
(V) | (A/cm2) | Passive | ||||||||
(V) | ||||||||||
Ti-6Al-2Sn-4Zr-2Mo | ||||||||||
3.5 wt. % NaCl | ||||||||||
Uncoated | −0.397 | 1.0 × 10−7 | Negative | N/A | N/A | 0.071 | 1.2 × 10−1 | 7.1 × 10−1 | 4.5 × 10−2 | 4.2 × 105 |
H2SO4 | −0.330 | 4.5 × 10−7 | Negative | 1.29 | 1.19 | 0.251 | 1.6 × 10−1 | 1.4 | 6.2 × 10−2 | 1.3 × 105 |
H3PO4 | −0.257 | 2.6 × 10−9 | Negative | 1.24 | 1.42 | 0.0014 | 2.6 × 10−1 | 7.8 × 10−1 | 7.7 × 10−2 | 2.9 × 107 |
3.5 wt. % H2SO4 | ||||||||||
Uncoated | −0.301 | 1.8 × 10−6 | Negative | N/A | N/A | 1.39 | 2.4 × 10−1 | 4.1 × 10−1 | 6.7 × 10−2 | 3.6 × 104 |
H2SO4 | −0.312 | 4.2 × 10−6 | Negative | 0.96 | 1.02 | 5.85 | 3.1 × 10−1 | 9.9 × 10−1 | 1.0 × 10−1 | 2.4 × 104 |
H3PO4 | −0.002 | 3.2 × 10−8 | Negative | 1.24 | 1.42 | 0.022 | 1.8 × 10−1 | 4.6 × 10−1 | 5.6 × 10−2 | 1.7 × 106 |
Ti-6Al-4V | ||||||||||
3.5 wt. % NaCl | ||||||||||
Uncoated | −0.144 | 1.0 × 10−7 | Negative | 0.6552 | 1.28 | 0.0388 | 1.4 × 10−1 | 1.5 × 10−1 | 3.3 × 10−2 | 3.2 × 105 |
H2SO4 | −0.237 | 1.2 × 10−7 | Negative | 0.48 | 0.77 | 0.0848 | 3.2 × 10−1 | 6.2 × 10−1 | 9.3 × 10−2 | 7.6 × 105 |
H3PO4 | −0.287 | 4.2 × 10−7 | Negative | 1.17 | 1.44 | 0.1127 | 3.9 × 10−1 | 1.8 | 1.3 × 10−1 | 3.2 × 105 |
3.5 wt. % H2SO4 | ||||||||||
Uncoated | −0.475 | 6.7 × 10−6 | Negative | 0.92 | 1.01 | 9.31 | 1.9 × 10−1 | 11.2 | 8.3 × 10−2 | 1.2 × 104 |
H2SO4 | −0.146 | 1.6 × 10−6 | Negative | 1.27 | 1.28 | 0.991 | 1.3 × 10−1 | 1.0 | 5.1 × 10−2 | 3.1 × 104 |
H3PO4 | −0.318 | 4.6 × 10−7 | Negative | 1.78 | 0.94 | 0.382 | 9.2 × 10−2 | 6.9 × 1−1 | 3.5 × 10−2 | 7.7 × 104 |
Sample | Rs (Ω·cm2) | Rpor (Ω·cm2) | CPE (F/cm2) | n | R (Ω·cm2) | C1 (F/cm2) | W (Ω·cm2) | X2 |
---|---|---|---|---|---|---|---|---|
Ti-6Al-2Sn-4Zr-2Mo | ||||||||
3.5 wt. % NaCl | ||||||||
Uncoated | 21.9 | 2.23 × 106 | 2.75 × 10−5 | 0.943 | – | – | – | 2.72 × 10−3 |
H2SO4 | 22.6 | 5.25 × 103 | 1.18 × 10−5 | 0.737 | – | – | 7.80 × 106 | 9.90 × 10−4 |
H3PO4 | 18.7 | 5.42 × 104 | 2.75 × 10−5 | 0.973 | – | – | 5.29 × 106 | 1.15 × 10−3 |
3.5 wt. % H2SO4 | ||||||||
Uncoated | 6.09 | 2.57 × 104 | 8.81 × 10−5 | 0.912 | 1.55 × 105 | 4.87 × 10−5 | – | 1.19 × 10−2 |
H2SO4 | 3.96 | 2.83 × 102 | 7.28 × 10−6 | 0.858 | – | – | 9.00 × 105 | 1.15 × 10−2 |
H3PO4 | 1.84 | 1.79 × 104 | 3.01 × 10−7 | 0.824 | – | – | 1.01 × 107 | 4.46 × 10−3 |
Ti-6Al-4V | ||||||||
3.5 wt. % NaCl | ||||||||
Uncoated | 20.2 | 3.44 × 106 | 2.54 × 10−5 | 0.925 | – | – | – | 2.24 × 10−3 |
H2SO4 | 20.8 | 2.42 × 104 | 2.26 × 10−5 | 0.787 | – | – | 8.22 × 105 | 1.31 × 10−3 |
H3PO4 | 23.1 | 1.56 × 103 | 4.36 × 10−7 | 0.802 | – | – | 7.16 × 105 | 5.09 × 10−3 |
3.5 wt. % H2SO4 | ||||||||
Uncoated | 4.18 | 3.07 × 105 | 3.82 × 10−5 | 0.935 | – | – | – | 2.11 × 10−2 |
H2SO4 | 4.35 | 2.17 × 103 | 3.97 × 10−6 | 0.902 | – | – | 5.57 × 105 | 3.32 × 10−3 |
H3PO4 | 4.72 | 9.27 × 101 | 1.20 × 10−5 | 0.822 | – | – | 9.16 × 105 | 1.65 × 10−3 |
Samples | δ (m) | ||
---|---|---|---|
3.5 wt. % NaCl | 3.5 wt. % H2SO4 | ||
Ti-6Al-2Sn-4Zr-2Mo | Uncoated | 2.77 × 10−9 | 8.62 × 10−11 |
H2SO4 | 6.45 × 10−9 | 1.05 × 10−8 | |
H3PO4 | 2.77 × 10−9 | 2.53 × 10−7 | |
Ti-6Al-4V | Uncoated | 2.15 × 10−9 | 1.99 × 10−9 |
H2SO4 | 3.37 × 10−9 | 1.92 × 10−8 | |
H3PO4 | 1.75 × 10−7 | 6.34 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Méndez-Ramírez, C.T.; Baltazar-Zamora, M.Á.; Estupinán-López, F.; Bautista-Margulis, R.G.; Cuevas-Rodríguez, J.; Flores-De los Rios, J.P.; Almeraya-Calderón, F. Corrosion of Titanium Alloys Anodized Using Electrochemical Techniques. Metals 2023, 13, 476. https://doi.org/10.3390/met13030476
Jáquez-Muñoz JM, Gaona-Tiburcio C, Méndez-Ramírez CT, Baltazar-Zamora MÁ, Estupinán-López F, Bautista-Margulis RG, Cuevas-Rodríguez J, Flores-De los Rios JP, Almeraya-Calderón F. Corrosion of Titanium Alloys Anodized Using Electrochemical Techniques. Metals. 2023; 13(3):476. https://doi.org/10.3390/met13030476
Chicago/Turabian StyleJáquez-Muñoz, Jesús Manuel, Citlalli Gaona-Tiburcio, Ce Tochtli Méndez-Ramírez, Miguel Ángel Baltazar-Zamora, Francisco Estupinán-López, Raul German Bautista-Margulis, Josefina Cuevas-Rodríguez, Juan Pablo Flores-De los Rios, and Facundo Almeraya-Calderón. 2023. "Corrosion of Titanium Alloys Anodized Using Electrochemical Techniques" Metals 13, no. 3: 476. https://doi.org/10.3390/met13030476
APA StyleJáquez-Muñoz, J. M., Gaona-Tiburcio, C., Méndez-Ramírez, C. T., Baltazar-Zamora, M. Á., Estupinán-López, F., Bautista-Margulis, R. G., Cuevas-Rodríguez, J., Flores-De los Rios, J. P., & Almeraya-Calderón, F. (2023). Corrosion of Titanium Alloys Anodized Using Electrochemical Techniques. Metals, 13(3), 476. https://doi.org/10.3390/met13030476