Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals
Abstract
:1. Introduction
2. Geometric Interpretation of Huber–von Mises Flow Mechanism
2.1. Tensor Representations
2.2. Atomistically Resolved Friction Coefficient
3. Generalized Huber–von Mises Criterion
4. Screw Dislocations in bcc Metals: Core Spreading and Volume Changes
4.1. Background: Dislocation Core Phenomena
4.2. Background: Volume Changes from Dislocations
4.3. Analysis: Volume Changes in bcc, fcc, and hcp Metals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Extension to Dynamic High-Pressure Regimes
References
- Vitek, V.; Mrovec, M.; Bassani, J.L. Influence of non-glide stresses on plastic flow: From atomistic to continuum modeling. Mater. Sci. Eng. A 2004, 365, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Bassani, L.J.; Racherla, V. From non-planar dislocation cores to non-associated plasticity and strain bursts. Prog. Mater. Sci. 2011, 56, 852–863. [Google Scholar] [CrossRef]
- Qin, Q.; Bassani, J. Non-Schmid yield behavior in single crystals. J. Mech. Phys. Solids 1992, 40, 813–833. [Google Scholar] [CrossRef]
- Qin, Q.; Bassani, J. Non-associated plastic flow in single crystals. J. Mech. Phys. Solids 1992, 40, 835–862. [Google Scholar] [CrossRef]
- Duesbery, M.S.; Vitek, V. Plastic anisotropy in B.C.C. transition metals. Acta Mater. 1998, 46, 1481–1492. [Google Scholar] [CrossRef]
- Vitek, V.; Paidar, V. Non-planar dislocation cores: A ubiquitous phenomenon affecting mechanical properties of crystalline materials. In Dislocations in Solids; Hirth, J.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 14, Chapter 87; pp. 441–514. [Google Scholar]
- Lim, H.; Hale, L.M.; Zimmerman, J.A.; Battaile, C.C.; Weinberger, C.R. A multi-scale model of dislocation plasticity in a-Fe: Incorporating temperature, strain rate and non-Schmid effects. Int. J. Plasticity 2015, 73, 100–118. [Google Scholar] [CrossRef] [Green Version]
- Tresca, H. Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. C. R. Acad. Sci. Paris 1864, 59, 754. [Google Scholar]
- Huber, M. Specific work of strain as a measure of material effort. Czas. Tech. 1904, XXII, 22. (In Polish) [Google Scholar]
- Huber, M. Specific work of strain as a measure of material effort. Arch. Mech. 2004, 56, 173–190, (English Translation). [Google Scholar]
- Von Mises, R. Mechanik der festen Körper im plastisch deformablen Zustand. Göttin. Nachr. Math. Phys. 1913, 1, 582–592. [Google Scholar]
- Schmid, E.; Boas, W. Kristallplastizität; Springer: Berlin/Heidelberg, Germany, 1928. [Google Scholar]
- Taylor, G.I.; Elam, C.F. The distortion of iron crystals. Proc. R. Soc. A 1926, 112, 337–361. [Google Scholar]
- Hosford, W.F. A generalized isotropic yield criterion. ASME J. Appl. Mech. 1972, 39, 607–609. [Google Scholar] [CrossRef]
- Hershey, A.V. The plasticity of an isotropic aggregate of anisotropic face-centered cubic crystals. ASME J. Appl. Mech. 1954, 21, 241–249. [Google Scholar] [CrossRef]
- Taylor, G.I. Plastic strain in metals. J. Inst. Metals 1938, 62, 307–324. [Google Scholar]
- Bishop, J.F.W.; Hill, R. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philos. Mag. 1951, 42, 414–427. [Google Scholar] [CrossRef]
- Van Houtte, P. On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals. Mater. Sci. Eng. 1982, 55, 69–77. [Google Scholar] [CrossRef]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. A 1948, 193, 281–297. [Google Scholar]
- Cazacu, O.; Plunkett, B.; Barlat, F. Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plasticity 2006, 22, 1171–1194. [Google Scholar] [CrossRef]
- Plunkett, B.; Cazacu, O.; Barlat, F. Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. Int. J. Plasticity 2008, 24, 847–866. [Google Scholar] [CrossRef]
- Zubelewicz, A. Micromechanical study of ductile polycrystalline materials. J. Mech. Phys. Solids 1993, 41, 1711–1722. [Google Scholar] [CrossRef]
- Zubelewicz, A. A mechanisms-based model for dynamic behavior and fracture of geomaterials. Int. J. Rock Mech. Mining Sci. 2014, 72, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Zubelewicz, A. Overall stress and strain rates for crystalline and frictional materials. Int. J. Non-Linear Mechanics 1990, 25, 389–392. [Google Scholar] [CrossRef]
- Zubelewicz, A. Another perspective on elastic and plastic anisotropy of textured metals. Proc. R. Soc. A 2021, 477, 20210234. [Google Scholar] [CrossRef]
- Gröger, R.; Racherla, V.; Vitek, V. Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2<111> screw dislocations at 0 K. Acta Mater. 2008, 56, 5401–5411. [Google Scholar]
- Gröger, R.; Racherla, V.; Vitek, V. Multiscale modeling of plastic deformation of molybdenum and tungsten: II. Yield criterion for single crystals based on atomistic studies of glide 1/2<111> screw dislocations. Acta Mater. 2008, 56, 5412–5425. [Google Scholar]
- Christian, J.W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metall. Trans. A 1983, 14, 1237–1256. [Google Scholar] [CrossRef]
- Kraych, A.; Clouet, E.; Dezerald, L.; Ventelon, L.; Willaime, F.; Rodney, D. Non-glide effects and dislocation core fields in BCC metals. NPJ Comp. Mater. 2019, 5, 109. [Google Scholar] [CrossRef] [Green Version]
- Hollang, L.; Hommel, M.; Seeger, A. The flow stress of ultra-high-purity molybdenum single crystals. Phys. Stat. Solidi A 1997, 160, 329–354. [Google Scholar] [CrossRef]
- Seeger, A.; Hollang, L. The flow-stress asymmetry of ultra-pure molybdenum single crystals. Mater. Trans. 2000, 41, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Hollang, L.; Brunner, D.; Seeger, A. Work hardening and flow stress of ultrapure molybdenum single crystals. Mater. Sci. Eng. A 2001, 319, 233–236. [Google Scholar] [CrossRef]
- Holder, J.; Granato, A.V. Thermodynamic properties of solids containing defects. Phys. Rev. 1969, 182, 729–741. [Google Scholar] [CrossRef]
- Wright, T.W. Stored energy and plastic volume change. Mech. Mater. 1982, 1, 185–187. [Google Scholar] [CrossRef]
- Spitzig, W.A.; Richmond, O. The effect of pressure on the flow stress of metals. Acta Metall. 1984, 32, 457–463. [Google Scholar] [CrossRef]
- Vitek, V. Computer simulation of the screw dislocation motion in bcc metals under the effect of the external shear and uniaxial stresses. Proc. R. Soc. A 1976, 352, 109–124. [Google Scholar]
- Ismail-Beigi, S.; Arias, T.A. Ab initio study of screw dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals. Phys. Rev. Lett. 2000, 84, 1499–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitek, V. Core structure of screw dislocations in body-centered cubic metals: Relation to symmetry and interatomic bonding. Philos. Mag. 2004, 84, 415–428. [Google Scholar] [CrossRef]
- Clayton, J.D. Dynamic plasticity and fracture in high density polycrystals: Constitutive modeling and numerical simulation. J. Mech. Phys. Solids 2005, 53, 261–301. [Google Scholar] [CrossRef]
- Finnis, M.W.; Sinclair, J.E. A simple empirical N-body potential for transition metals. Philos. Mag. A 1984, 50, 45–55. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.Z.; Chang, J.P.; Cai, W.; Bulatov, V.V.; Ho, K.M.; Yip, S. Core energy and Peierls stress of a screw dislocation in bcc molybdenum: A periodic-cell tight-binding study. Phys. Rev. B 2004, 70, 104113. [Google Scholar] [CrossRef] [Green Version]
- Teodosiu, C. Elastic Models of Crystal Defects; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Clayton, J.D. Nonlinear Mechanics of Crystals; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Toupin, R.; Rivlin, R. Dimensional changes in crystals caused by dislocations. J. Math. Phys. 1960, 1, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Clayton, J.D.; Bammann, D.J. Finite deformations and internal forces in elastic-plastic crystals: Interpretations from nonlinear elasticity and anharmonic lattice statics. ASME J. Eng. Mater. Tech. 2009, 131, 041201. [Google Scholar] [CrossRef]
- Clayton, J.D. Defects in nonlinear elastic crystals: Differential geometry, finite kinematics, and second-order analytical solutions. ZAMM-J. Appl. Math. Mech. 2015, 95, 476–510. [Google Scholar] [CrossRef]
- Webb, E.B.; Zimmerman, J.A.; Seel, S.C. Reconsideration of continuum thermomechanical quantities in atomic scale simulations. Math. Mech. Solids 2008, 13, 221–266. [Google Scholar] [CrossRef]
- Henager, C.H., Jr.; Hoagland, R.G. Dislocation core fields and forces in FCC metals. Scripta Mater. 2004, 50, 1091–1095. [Google Scholar] [CrossRef]
- Foreman, A.J.E. Dislocation energies in anisotropic crystals. Acta Metall. 1955, 3, 322–330. [Google Scholar] [CrossRef]
- Steeds, J.W. Introduction to Anisotropic Elasticity Theory of Dislocations; Clarendon Press: Oxford, UK, 1973. [Google Scholar]
- Seeger, A.; Haasen, P. Density changes of crystals containing dislocations. Philos. Mag. 1958, 3, 470–475. [Google Scholar] [CrossRef]
- Zener, C. Theory of lattice expansion introduced by cold work. Trans. Am. Inst. Mining Metall. Engrs. 1942, 147, 361–368. [Google Scholar]
- Sinclair, J.; Gehlen, P.; Hoagland, R.; Hirth, J. Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling. J. Appl. Phys. 1978, 49, 3890–3897. [Google Scholar] [CrossRef]
- Clouet, E.; Ventelon, L.; Willaime, F. Dislocation core energies and core fields from first principles. Phys. Rev. Lett. 2009, 102, 055502. [Google Scholar] [CrossRef] [Green Version]
- Clouet, E.; Ventelon, L.; Willaime, F. Dislocation core field II. Screw Dislocation in Iron. Phys. Rev. B 2011, 84, 224107. [Google Scholar] [CrossRef] [Green Version]
- Kocks, U.F.; Argon, A.S.; Ashby, M.F. Thermodynamics and kinetics of slip. Prog. Mater. Sci. 1975, 19, 1–288. [Google Scholar]
- Hull, D.; Bacon, D.J. Introduction to Dislocations, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1984. [Google Scholar]
- Ninomiya, T. Theory of melting, dislocation model. I. J. Phys. Soc. Japan 1978, 44, 263–268. [Google Scholar] [CrossRef]
- Guinan, M.W.; Steinberg, D.J. Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 1974, 35, 1501–1512. [Google Scholar] [CrossRef]
- Clayton, J.D. An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Q. J. Mech. Appl. Math. 2014, 67, 127–158. [Google Scholar] [CrossRef] [Green Version]
- Clayton, J.D. A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc. R. Soc. A 2009, 465, 307–334. [Google Scholar] [CrossRef]
- Clayton, J.D. Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Horie, Y. Thermodynamics of dislocations and shock compression of solids. Phys. Rev. B 1980, 21, 5549–5557. [Google Scholar] [CrossRef]
- Zubelewicz, A. Thermodynamics description of dynamic plasticity in metals. Forces Mech. 2022, 9, 100121. [Google Scholar] [CrossRef]
- Clayton, J.D. Nonlinear thermomechanics for analysis of weak shock profile data in ductile polycrystals. J. Mech. Phys. Solids 2019, 124, 714–757. [Google Scholar] [CrossRef]
- Rohatgi, A.; Vecchio, K.S.; Gray, G.T., III. A metallographic and quantitative analysis of the influence of stacking fault energy on shock-hardening in Cu and Cu–Al alloys. Acta Mater. 2001, 49, 427–438. [Google Scholar] [CrossRef]
- Bringa, E.M.; Caro, A.; Wang, Y.; Victoria, M.; McNaney, J.M.; Remington, B.A.; Smith, R.F.; Torralva, B.R.; Van Swygenhoven, H. Ultrahigh strength in nanocrystalline materials under shock loading. Science 2005, 309, 1838–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehadeh, M.A.; Bringa, E.M.; Zbib, H.M.; McNaney, J.M.; Remington, B.A. Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Appl. Phys. Lett. 2006, 89, 171918. [Google Scholar] [CrossRef]
- Elkhodary, E.I.; Zikry, M.A. A fracture criterion for finitely deforming crystalline solids-the dynamic fracture of single crystals. J. Mech. Phys. Solids 2011, 59, 2007–2022. [Google Scholar] [CrossRef]
- Lim, H.; Carroll, J.D.; Battaile, C.C.; Chen, S.R.; APMoore, A.P.; Lane, J.D. Anisotropy and strain localization in dynamic impact experiments of tantalum single crystals. Sci. Rep. 2018, 8, 5540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogler, T.J.; Clayton, J.D. Heterogeneous deformation and spall of an extruded tungsten alloy: Plate impact experiments and crystal plasticity modeling. J. Mech. Phys. Solids 2008, 56, 297–335. [Google Scholar] [CrossRef]
- Lloyd, J.T.; Clayton, J.D.; Becker, R.; McDowell, D.L. Simulation of shock wave propagation in single crystal and polycrystalline aluminum. Int. J. Plasticity 2014, 60, 118–144. [Google Scholar] [CrossRef]
- Hill, R. The Mathematical Theory of Plasticity; Clarendon Press: Oxford, UK, 1950. [Google Scholar]
Metal | Structure | B [GPa] | G [GPa] | ν | B’ | G’ | A | αe | αs | αexp | <111> Spreading |
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | bcc | 166 | 82 | 0.29 | 5.3 | 1.8 | 2.37 | 2.13 | 1.31 | - | Yes |
Mo | bcc | 263 | 125 | 0.29 | 4.4 | 1.5 | 0.72 | 1.66 | 1.02 | - | Yes |
Ta | bcc | 193 | 69 | 0.34 | 3.2 | 1.1 | 1.56 | 1.14 | 0.74 | - | Yes |
W | bcc | 310 | 160 | 0.28 | 4.0 | 2.3 | 1.01 | 2.39 | 1.78 | - | Yes |
Al | fcc | 76 | 26 | 0.35 | 4.4 | 1.8 | 1.22 | 2.14 | 1.46 | 2.04 | No |
Ag | fcc | 103 | 30 | 0.37 | 6.1 | 1.4 | 3.03 | 1.87 | 1.11 | 1.08 | No |
Au | fcc | 173 | 28 | 0.42 | 6.3 | 1.1 | 2.88 | 1.61 | 0.94 | 1.08 | No |
Cu | fcc | 137 | 48 | 0.34 | 5.5 | 1.4 | 3.21 | 1.77 | 1.05 | 1.23–1.68 | No |
Ni | fcc | 183 | 86 | 0.30 | 6.2 | 1.4 | 2.46 | 1.86 | 0.93 | 1.74–1.78 | No |
Mg | hcp | 35 | 17 | 0.29 | 3.9 | 1.7 | 0.98 | 1.78 | 1.21 | - | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubelewicz, A.; Clayton, J.D. Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals. Metals 2023, 13, 523. https://doi.org/10.3390/met13030523
Zubelewicz A, Clayton JD. Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals. Metals. 2023; 13(3):523. https://doi.org/10.3390/met13030523
Chicago/Turabian StyleZubelewicz, Aleksander, and John D. Clayton. 2023. "Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals" Metals 13, no. 3: 523. https://doi.org/10.3390/met13030523
APA StyleZubelewicz, A., & Clayton, J. D. (2023). Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals. Metals, 13(3), 523. https://doi.org/10.3390/met13030523