The Effect of Heating Temperature on α-α′ Miscibility and Separation in Fe-25Cr-5Al-RE Alloy
Abstract
:1. Introduction
2. Experiment
2.1. Materials, Processing, and Heat Treatment
2.2. Materials Characterization
2.3. Metholody (Rietveld Analysis)
3. Results and Discussion
3.1. Phase and Rietveld Analysis
3.2. SEM Analysis
3.3. TEM Analysis
3.4. Mechanical Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Capdevila, C.; Aranda, M.M.; Rementeria, R.; Chao, J.; Urones-Garrote, E.; Aldazabal, J.; Miller, M.K. Strengthening by intermetallic nanoprecipitation in Fe–Cr–Al–Ti alloy. Acta Mater. 2016, 107, 27. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Liu, J.; Qiu, S.; Deng, Z.; Yang, Y.; McLean, A. Microstructure and high temperature mechanical properties of as-cast FeCrAl alloys. Mater. Sci. Eng. A. Struct. Mater. Prop. Microstruct. Process. 2018, 726, 56. [Google Scholar] [CrossRef]
- Liu, Z.; Han, Q.; Guo, Y.; Lang, J.; Shi, D.; Zhang, Y.; Du, S. Development of interatomic potentials for Fe-Cr-Al alloy with the particle swarm optimization method. J. Alloy. Compd. 2019, 780, 881. [Google Scholar] [CrossRef]
- Nagahama, K.; Miki, I. Precipitation during Recrystallization in Al–Mn and Al–Cr Alloys. Trans. Jpn. Inst. Met. 1974, 15, 185. [Google Scholar] [CrossRef] [Green Version]
- Nagahama, K.; Miki, I. Precipitation during recrystallization in Al-Cr alloys. J. Jpn. Inst. Light Met. 1974, 24, 77. [Google Scholar] [CrossRef]
- Malerba, G.B.T. On the α–α′ miscibility gap of Fe–Cr alloys. Scr. Mater. 2008, 59, 1193. [Google Scholar]
- Rank, M.; Franke, P.; Hoffmann, J.; Seifert, H.J. Experimental investigation of phase equilibria in the Al–Cr–Fe system. Calphad 2019, 66, 101638. [Google Scholar] [CrossRef]
- Qu, H.P.; Lang, Y.P.; Yao, C.F.; Chen, H.T.; Yang, C.Q. The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe–Cr–Al–REM ferritic stainless steel sheets. Mater. Sci. Eng. A 2013, 562, 9. [Google Scholar] [CrossRef]
- Lu, H.H.; Guo, H.K.; Liang, W.; Shen, X.Q. The precipitation behavior and its effect on mechanical properties of cold-rolled super-ferritic stainless steels during high-temperature annealing. J. Mater. Res. Technol. 2021, 8, 1171. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.X.; Xia, C.H.; Ouyang, M.H.; Peng, J.C.; Zhang, H.W.; Xiao, X.S. Aluminum suppression of α′ precipitate in model Fe–Cr–Al alloys during long-term aging at 475 °C. Mater. Sci. Eng. A 2019, 772, 138714. [Google Scholar] [CrossRef]
- Kim, H.; Subramanian, G.O.; Kim, C.; Jang, H.; Jang, C. 400 °C aging embrittlement of FeCrAl alloys: Microstructure and fracture behavior. Mater. Sci. Eng. A 2018, 743, 159. [Google Scholar] [CrossRef]
- Capdevila, C.; Miller, M.K.; Russell, K.F. Aluminum partitioning during phase separation in Fe–20%Cr–6%Al ODS alloy. J. Mater. Sci. 2008, 43, 3889. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, H.; Wang, H.; Wang, X.; An, X.; He, K. Effects of Cr element on the crystal structure, microstructure, and mechanical properties of FeCrAl alloys. Mater. Sci. Eng. A 2021, 826, 142003. [Google Scholar] [CrossRef]
- Li, T.; Dang, N.; Zhang, W.; Liang, W.; Yang, F. Determining the Degree of [001] Preferred Growth of Ni(OH)2 Nanoplates. Nanomaterials 2018, 8, 991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65. [Google Scholar] [CrossRef]
- Wenk, H.R.; Matthies, S.; Lutterotti, L. Texture Analysis from Diffraction Spectra. Mater. Sci. Forum 1994, 157–162, 473. [Google Scholar]
- Sitepu, H.; O’Connor, B.H.; Li, D. Comparative evaluation of the March and generalized spherical harmonic preferred orientation models using X-ray diffraction data for molybdite and calcite powders. J. Appl. Crystallogr. 2005, 38, 158. [Google Scholar] [CrossRef]
- Li, T.; Zheng, L.W.; Zhang, W.G. Determining the Preferred Orientation of Silver-Plating via X-ray Diffraction Profile. Nanomaterials 2021, 11, 2417. [Google Scholar] [CrossRef]
- Tarafder, K.; Ghosh, S.; Sanyal, B.; Eriksson, O.; Mookerjee, A.; Chakrabarti, A. Electronic and magnetic properties of disordered Fe–Cr alloys using different electronic structure methods. J. Phys. Condens. Matter 2008, 20, 445201. [Google Scholar] [CrossRef]
- Bachhav, M.; Odette, G.R.; Marquis, E.A. α′ precipitation in neutron-irradiated Fe–Cr alloys. Scr. Mater. 2014, 74, 48. [Google Scholar] [CrossRef]
- Beraldo, C.H.; Calderón-Hernández, J.W.; Magnabosco, R.; Alonso-Falleiros, N. Effect of Aging Heat Treatment H950 and H1000 on Mechanical and Pitting Corrosion Properties of UNS S46500 Stainless Steel. Mater. Res. 2018, 22, 1. [Google Scholar] [CrossRef]
- Kobayashi, S.; Takasugi, T. Mapping of 475 °C embrittlement in ferritic Fe–Cr–Al alloys. Scr. Mater. 2010, 63, 1104–1107. [Google Scholar] [CrossRef]
- Bonny, G.; Erhart, P.; Caro, A.; Pasianot, R.C.; Malerba, L.; Caro, M. The influence of short range order on the thermodynamics of Fe-Cr alloys. Model. Simul. Mater. Sci. Eng. 2009, 17, 25006. [Google Scholar] [CrossRef]
- Ejenstam, J.; Thuvander, M.; Olsson, P.; Rave, F.; Szakalos, P. Microstructural stability of Fe–Cr–Al alloys at 450–550 °C. J. Nucl. Mater. 2015, 457, 291. [Google Scholar] [CrossRef] [Green Version]
C | Si | Mn | P | S | Cr | Al | Ti | RE(La) | N |
---|---|---|---|---|---|---|---|---|---|
0.018 | 0.23 | 0.11 | 0.014 | 0.001 | 24.18 | 5.46 | 0.12 | 0.053 | 0.001 |
Rietveld Results | Rolled | 600 | 700 | 800 | 900 | 1000 | |||
---|---|---|---|---|---|---|---|---|---|
Lattice constant | Chromium iron(Å) | 3.0127 | 3.0633 | 2.9884 | 2.9540 | 2.9990 | 3.0656 | ||
Ferrite(Å) | 2.8917 | 2.8953 | 2.8880 | 2.8902 | 2.8914 | 2.8938 | |||
Lattice difference(Å) | 0.1210 | 0.1680 | 0.1004 | 0.0638 | 0.1076 | 0.1718 | |||
Preferred orientation (Ferrite) | Generalized harmonic coefficients | (Clmn) | C41 | 10.5 | 11.17 | 5.04 | −1.859 | 1.56 | 2.41 |
C61 | −5.40 | −3.58 | −0.83 | 1.988 | 4.64 | 1.51 | |||
C81 | −4.06 | −2.43 | 2.20 | 3.784 | 7.09 | 5.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Liu, Y.; Cheng, S.; Liu, C. The Effect of Heating Temperature on α-α′ Miscibility and Separation in Fe-25Cr-5Al-RE Alloy. Metals 2023, 13, 597. https://doi.org/10.3390/met13030597
Li T, Liu Y, Cheng S, Liu C. The Effect of Heating Temperature on α-α′ Miscibility and Separation in Fe-25Cr-5Al-RE Alloy. Metals. 2023; 13(3):597. https://doi.org/10.3390/met13030597
Chicago/Turabian StyleLi, Taotao, Yanlian Liu, Shengwei Cheng, and Chengzhi Liu. 2023. "The Effect of Heating Temperature on α-α′ Miscibility and Separation in Fe-25Cr-5Al-RE Alloy" Metals 13, no. 3: 597. https://doi.org/10.3390/met13030597
APA StyleLi, T., Liu, Y., Cheng, S., & Liu, C. (2023). The Effect of Heating Temperature on α-α′ Miscibility and Separation in Fe-25Cr-5Al-RE Alloy. Metals, 13(3), 597. https://doi.org/10.3390/met13030597