The Effect of Bi and Zn Additives on Sn-Ag-Cu Lead-Free Solder Alloys for Ag Reduction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rettenmayr, M.; Lambeacht, P.; Kemp, B.; Graff, M. High melting Pb-free solder alloys for die-attach applications. Adv. Eng. Mater. 2005, 7, 965–969. [Google Scholar] [CrossRef]
- Wang, F.J.; Yu, Z.S.; Qi, K. Intermetallic compound formation at Sn–3.0Ag–0.5Cu–1.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions. J. Alloys Compd. 2007, 438, 110–115. [Google Scholar] [CrossRef]
- Gain, A.K.; Chan, Y.C.; Sharif, A.; Wong, N.B.; Yung, W.K.C. Interfacial microstructure and shear strength of Ag nano particle doped Sn-9Zn solder in ball grid array packages. Microelectron. Reliab. 2009, 7, 746–753. [Google Scholar] [CrossRef]
- Anderson, I.E.; Harring, J.L. Elevated temperature aging of solder joints based on Sn–Ag–Cu: Effects on joint microstructure and shear strength. J. Electron. Mater. 2004, 33, 1485–1496. [Google Scholar] [CrossRef]
- Islam, M.N.; Chan, Y.C.; Sharif, A.; Rizvi, M.J. Effect of 9 wt.% in addition to Sn3.5Ag0.5Cu solder on the interfacial reaction with the Au/NiP metallization on Cu pads. J. Alloys Compd. 2005, 396, 217–223. [Google Scholar] [CrossRef]
- Gu, X.; Chan, Y.C.; Yang, D.; Wu, B.Y. The shearing behavior and microstructure of Sn–4Ag–0.5Cu solder joints on a Ni–P–carbon nanotubes composite coating. J. Alloys. Compd. 2009, 468, 553–557. [Google Scholar] [CrossRef]
- Hodulova, E.; Palcut, M.; Lechovič, E.; Šimeková, B.; Ulrich, K. Kinetics of intermetallic phase formation at the interface of Sn–Ag–Cu–X (X= Bi, In) solders with Cu substrate. J. Alloys Compd. 2011, 509, 7052–7059. [Google Scholar] [CrossRef]
- Yen, Y.W.; Syu, R.S.; Chen, C.M.; Jao, C.C.; Chen, G.D. Interfacial reactions of Sn–58Bi and Sn–0.7Cu lead-free solders with Alloy 42 substrate. Microelectron. Reliab. 2014, 54, 233–238. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Min, Z. Interfacial reaction and IMC growth between Bi-containing Sn0. 7Cu solders and Cu substrate during soldering and aging. J. Alloys Compd. 2014, 582, 341–347. [Google Scholar] [CrossRef]
- Wang, H.; Hu, X.; Jiang, X. Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn-3.0Ag-0.5 Cu composite solder joints. Mater. Charact. 2020, 163, 110287. [Google Scholar] [CrossRef]
- El-Daly, A.A.; El-Hosainy, H.; Elmosalami, T.A.; Desoky, W.M. Microstructural modifications and properties of low-Ag-content Sn–Ag–Cu solder joints induced by Zn alloying. J. Alloys Compd. 2015, 653, 402–410. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, Z.C.; Gao, L.Y.; Liu, Z.Q. Effect of Bi addition on the shear strength and failure mechanism of low-Ag lead-free solder joints. J. Mater. Sci. Mater. Electron. 2021, 32, 2172–2186. [Google Scholar] [CrossRef]
- El-Daly, A.A.; El-Taher, A.M.; Gouda, S. Development of new multicomponent Sn–Ag–Cu–Bi lead-free solders for low-cost commercial electronic assembly. J. Alloys Compd. 2015, 627, 268–275. [Google Scholar] [CrossRef]
- Kang, S.K.; Shih, D.Y.; Leonard, D.; Henderson, D.W.; Gosselin, T.; Cho, S.-I.; Yu, J.; Choi, W.K. Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying. JOM 2004, 56, 34–38. [Google Scholar] [CrossRef]
- Ali, U.; Khan, H.; Aamir, M.; Giasin, K.; Habib, N.; Owais Awan, M. Analysis of microstructure and mechanical properties of bismuth-doped SAC305 lead-free solder alloy at high temperature. Metals 2021, 11, 1077. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Huang, Y.; Liu, L.; Zhang, Z. Recent progress on the development of Sn–Bi based low-temperature Pb-free solders. J. Mater. Sci. Mater. Electron. 2019, 30, 3222–3243. [Google Scholar] [CrossRef]
- Peng, Y.Z.; Li, C.J.; Yang, J.J.; Zhang, J.T.; Peng, J.B.; Zhou, G.J.; Cun, J.P.; Yi, J.H. Effects of Bismuth on the Microstructure, Properties, and Interfacial Reaction Layers of Sn-9Zn-xBi Solders. Metals 2021, 11, 538. [Google Scholar] [CrossRef]
- Luo, Z.B.; Zhao, J.F.; Gao, Y.J.; Wang, L. Revisiting mechanisms to inhibit Ag3Sn plates in Sn–Ag–Cu solders with 1 wt.% Zn addition. J. Alloys Compd. 2010, 500, 39–45. [Google Scholar] [CrossRef]
- Zhao, J.; Qi, L.; Wang, L. Effect of Bi on the kinetics of intermetallics growth in Sn-3Ag-0.5Cu/Cu solder joint. In Proceedings of the Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, HDP’06, Shanghai, China, 27–28 June 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 232–235. [Google Scholar]
- Li, G.Y.; Shi, X.Q. Effects of bismuth on growth of intermetallic compounds in Sn-Ag-Cu Pb-free solder joints. Trans. Nonferrous Met. Soc. China 2006, 16, s739–s743. [Google Scholar] [CrossRef]
- Illés, B.; Hurtony, T.; Medgyes, B.; Krammer, O.; Dusek, K.; Busek, D. Sn and Bi whisker growth from SAC0307-Mn07 and SAC0307-Bi1-Mn07 ultra-thin film layers. Vacuum 2021, 187, 110121. [Google Scholar] [CrossRef]
- Illés, B.; Bátorfi, R.; Hurtony, T.; Krammer, O.; Harsányi, G.; Pietrikova, A.; Skwarek, A.; Witek, K. Whisker Development from SAC0307-Mn07 Solder Alloy. In Proceedings of the 43rd Internation Spring Seminar on Electronics Technology (ISSE), Demanovska Valley, Slovakia, 14–15 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Kang, S.K.; Lauro, P.; Shih, D.Y.; Henderson, D.W.; Bartelo, J.; Gosselin, T.; Steave, R.C.; Charles., G.; Karl., P.; Choi, W.K. The microstructure, thermal fatigue, and failure analysis of near-ternary eutectic Sn-Ag-Cu solder joints. Mater. Trans. 2004, 45, 695–702. [Google Scholar] [CrossRef]
- Terashima, S.; Kariya, Y.; Hosoi, T.; Tanaka, M. Effect of silver content on thermal fatigue life of Sn-xAg-0.5Cu flip-chip interconnects. J. Electron. Mater. 2003, 32, 1527–1533. [Google Scholar] [CrossRef]
- Kim, K.S.; Huh, S.H.; Suganuma, K. Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys. Mater. Sci. Eng. A 2002, 333, 106–114. [Google Scholar] [CrossRef]
Conditions | Elemental Compositions (wt.%) | ||||
---|---|---|---|---|---|
Sn | Ag | Cu | Zn | Bi | |
SAC305 | 96.5 | 3 | 0.5 | - | - |
SAC-1Zn | 96.5 | 2 | 0.5 | 1 | - |
SAC-0.8Zn-0.2Bi | 96.5 | 2 | 0.5 | 0.8 | 0.2 |
SAC-0.5Zn-0.5Bi | 96.5 | 2 | 0.5 | 0.5 | 0.5 |
SAC-0.2Zn-0.8Bi | 96.5 | 2 | 0.5 | 0.2 | 0.8 |
SAC-1Bi | 96.5 | 2 | 0.5 | - | 1 |
Conditions | Elemental Compositions (wt.%) | ||||
---|---|---|---|---|---|
Sn | Ag | Cu | Zn | Bi | |
SAC305 | Bal. | 3.1358 | 0.6897 | - | - |
SAC-1Zn | Bal. | 2.1789 | 0.6273 | 1.0815 | - |
SAC-0.8Zn-0.2Bi | Bal. | 2.1372 | 0.5320 | 0.7897 | 0.1962 |
SAC-0.5Zn-0.5Bi | Bal. | 2.0045 | 0.4803 | 0.3951 | 0.5028 |
SAC-0.2Zn-0.8Bi | Bal. | 2.0113 | 0.4716 | 0.1131 | 0.7476 |
SAC-1Bi | Bal. | 1.9508 | 0.6362 | 0.0662 | 0.8733 |
Conditions | Onset Melting Point (Tonset) | End Melting Point (Tend) | Peak Cooling Point (Tcool) | Undercooling (∆T1 = Tonset − Tcool) | Pasty Range (∆T2 = Tend − Tonset) |
---|---|---|---|---|---|
SAC305 | 217.16 °C | 258.16 °C | 189.71 °C | 27.45 °C | 40.86 °C |
SAC-1Zn | 215.57 °C | 255.79 °C | 208.91 °C | 6.66 °C | 40.22 °C |
SAC-0.8Zn-0.2Bi | 213.61 °C | 257.38 °C | 205.81 °C | 7.80 °C | 43.77 °C |
SAC-0.5Zn-0.5Bi | 214.93 °C | 258.02 °C | 208.28 °C | 6.65 °C | 43.09 °C |
SAC-0.2Zn-0.8Bi | 213.30 °C | 258.66 °C | 207.32 °C | 5.98 °C | 45.36 °C |
SAC-1Bi | 213.33 °C | 257.22 °C | 194.21 °C | 19.12 °C | 43.89 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Choi, J.-J.; Kim, D.-G.; Shim, H.-W. The Effect of Bi and Zn Additives on Sn-Ag-Cu Lead-Free Solder Alloys for Ag Reduction. Metals 2022, 12, 1245. https://doi.org/10.3390/met12081245
Kang Y, Choi J-J, Kim D-G, Shim H-W. The Effect of Bi and Zn Additives on Sn-Ag-Cu Lead-Free Solder Alloys for Ag Reduction. Metals. 2022; 12(8):1245. https://doi.org/10.3390/met12081245
Chicago/Turabian StyleKang, Yubin, Jin-Ju Choi, Dae-Guen Kim, and Hyun-Woo Shim. 2022. "The Effect of Bi and Zn Additives on Sn-Ag-Cu Lead-Free Solder Alloys for Ag Reduction" Metals 12, no. 8: 1245. https://doi.org/10.3390/met12081245
APA StyleKang, Y., Choi, J. -J., Kim, D. -G., & Shim, H. -W. (2022). The Effect of Bi and Zn Additives on Sn-Ag-Cu Lead-Free Solder Alloys for Ag Reduction. Metals, 12(8), 1245. https://doi.org/10.3390/met12081245