Fatigue Life Assessment of Metals under Multiaxial Asynchronous Loading by Means of the Refined Equivalent Deformation Criterion
Abstract
:1. Introduction
- (i)
- the unclear cycle definition, due to different frequencies of the load components;
- (ii)
- the not obvious dependence of non-proportionality degree on the values of the ratio (being and the frequencies of the shear and normal strain components, respectively);
- (iii)
- the existence of more than one plane where the maximum damage can be achieved (that is, multiple possible critical planes). For instance, in the case of both in-phase and out-of-phase loading, there are two planes of maximum shear strain and one plane of maximum normal strain, with the plane of maximum normal strain coincident with one of the two planes of maximum shear strain in the case of out-of-phase loading. On the contrary, in the case of asynchronous loading, the number of planes changes according to the ratio: for a butterfly-shape strain path (), four planes of maximum shear strain and two planes of maximum normal strain can be observed [16].
2. Examined Experimental Campaigns
2.1. Materials and Specimens
2.2. Testing Conditions and Experimental Results
3. The Refined Equivalent Deformation (RED) Criterion
3.1. Material Sensitivity to Non-Proportional Loading
3.2. Critical Plane Determination
3.3. Damage Parameter Determination
3.3.1. and Parameters Definitions
3.3.2. and Parameters Definitions
4. Results and Discussion
4.1. 304 Stainless Steel
4.1.1. Material Sensitivity to Non-Proportional Loading and RED Parameter Computation
4.1.2. Proportional Loading Tests Results
4.1.3. Non-Proportional Loading Tests Results
4.1.4. Comparison with Literature Data
4.2. 355 Structural Steel
4.2.1. Material Sensitivity to Non-Proportional Loading and RED Parameter Computation
4.2.2. Proportional Loading Tests Results
4.2.3. Non-Proportional Loading Tests Results
4.2.4. Comparison with Literature Data
5. Conclusions
- all the of the estimations fall into the scatter band 3, with 86% of them into the scatter band 2;
- the value is 1.68;
- the accuracy of the RED criterion, with a , is similar to that of the Fatemi-Socie (FS) criterion ( ) and slightly lower than that of the Smith, Watson and Topper (SWT) one ( ).
- all the of the estimations fall into the scatter band 3, with 92% of them into the scatter band 2;
- the value is 1.52;
- the accuracy of the RED criterion, with a , is significantly better than that of both the FS criterion ( ) and the SWT one ( ).
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
directions of the principal strain axes at the time instant when is maximum | |
elastic modulus | |
material constant representative of the material sensitivity to the change of fatigue properties | |
length of the path in the plane | |
experimental number of loading cycles to failure | |
number of loading cycles to failure | |
normal vector to the critical plane | |
fixed frame | |
area of the smallest circle which contains the -th convex path | |
area enveloped by the -th convex path | |
root mean square error | |
local frame attached to the critical plane | |
additional cyclic hardening coefficient | |
torsional Manson–Coffin equation | |
amplitude of the applied shear strain | |
critical plane | |
angle defining the normal to the critical plane | |
principal strains | |
tensile Manson–Coffin equation | |
equivalent deformation amplitude for proportional loading | |
refined equivalent deformation amplitude | |
amplitude of the applied normal strain | |
displacement vector on the critical plane | |
amplitude of the normal displacement vector | |
amplitude of the tangential displacement vector | |
effective Poisson’s ratio | |
fully reversed normal strength | |
fully reversed shear strength | |
coefficient of non-proportionality of the -th non-proportional strain path | |
angle formed by the -th non-proportional strain path with respect to the abscissa axis in the plane |
References
- Skibicki, D. Phenomena and Computational Models of Non-Proportional Fatigue of Materials; Springer: London, UK, 2014. [Google Scholar]
- McDowell, D.L.; Stahl, D.R.; Stock, S.R.; Antolovich, S.D. Biaxial path dependence of deformation substructure of Type-304 Stainless-Steel. Metall. Mater. Trans. A 1988, 19, 1277–1293. [Google Scholar] [CrossRef]
- Jiao, F.; Osterle, W.; Portella, P.D.; Ziebs, J. Biaxial path-dependence of low-cycle fatigue behavior and microstructure of Alloy 800-H at room-temperature. Mater. Sci. Eng. A 1995, 196, 19–24. [Google Scholar] [CrossRef]
- Zhang, J.X.; Jiang, Y.Y. An experimental investigation on cyclic plastic deformation and substructures of polycrystalline copper. Int. J. Plast. 2005, 21, 2191–2211. [Google Scholar] [CrossRef]
- Nishino, S.; Hamada, N.; Sakane, M.; Ohnami, M.; Matsumura, N.; Tokizane, M. Microstructural study of cyclic strain-hardening behavior in biaxial stress states at elevated-temperature. Fatigue Fract. Eng. Mater. Struct. 1986, 9, 65–77. [Google Scholar] [CrossRef]
- Rios, E.R.; Andrews, R.M.; Brown, M.W.; Miller, K.J. Out-of-phase cyclic deformation and fatigue fracture studies on 316 stainless steel. In Biaxial and Multiaxial Fatigue, EGF 3; Mechanical Engineering Publications: London, UK, 1989. [Google Scholar]
- Bocher, L.; Delobelle, P.; Robinet, P.; Feaugas, X. Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension-torsion-internal and external pressure. Int. J. Plast. 2001, 17, 1491–1530. [Google Scholar] [CrossRef]
- Vantadori, S. A novel multiaxial strain-based criterion considering additional cyclic hardening. Materials 2021, 14, 2542. [Google Scholar] [CrossRef]
- Ogawa, F.; Shimizu, Y.; Bressan, S.; Morishita, T.; Itoh, T. Bending and torsion fatigue-testing machine developed for multiaxial non-proportional loading. Metals 2019, 9, 1115. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Pan, J.; Mi, D.; Mao, J.; Li, W.; Fu, Y.; Wang, R. Prediction of anisotropic LCF behavior for SLM Ti-6Al-4V considering the spatial orientation of defects. Int. J. Fatigue 2022, 158, 106734. [Google Scholar] [CrossRef]
- Zhan, L.; Wang, S.-Y.; Bruhns, O.T.; Xiao, H. High-efficiency algorithms for simulating metal failure effects under multiaxial repeated loadings. Int. J. Numer. Methods Eng. 2022, 123, 1277–1293. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, W.; Ding, Z. Dislocation Density Evolution in Low-Cycle Fatigue of Steels Using Dislocation-Based Crystal Plasticity. J. Eng. Mech. 2022, 148, 04021149. [Google Scholar] [CrossRef]
- Sun, T.; Xie, Y.; Pan, Y.; Zheng, Z.; Xie, C.; Huang, Z. Micromechanics-Based Low Cycle Fatigue Life Prediction Model of ECAPed Aluminum Alloy. Metals 2022, 12, 1127. [Google Scholar] [CrossRef]
- Anes, V.; Reis, L.; Freitas, M. Effect of Shear/Axial Stress Ratio on Multiaxial Non-Proportional Loading Fatigue Damage on AISI 303 Steel. Metals 2022, 12, 89. [Google Scholar] [CrossRef]
- Ellyin, F.; Gołoś, K.; Xia, Z. In phase and out-of-phase multiaxial fatigue. J. Eng. Mater. Technol. 1991, 113, 112–118. [Google Scholar] [CrossRef]
- Pejkowski, Ł.; Skibicki, D. Stress-strain response and fatigue life of four metallic materials under asynchronous loadings: Experimental observations. Int. J. Fatigue 2019, 128, 105202. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, H.-Z.; Li, H. A novel energy-critical multiaxial fatigue life prediction for low cycle fatigue under mixed-mode loading. Metals 2018, 8, 1066. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Z.; Li, B.; Lang, S. Multiaxial fatigue life prediction of GH4169 alloy based on the critical plane method. Metals 2019, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Cruces, A.S.; Lopez-Crespo, P.; Bressan, S.; Itoh, T.; Moreno, B. On the Behaviour of 316 and 304 stainless steel under multiaxial fatigue loading: Application of the critical plane approach. Metals 2019, 9, 978. [Google Scholar] [CrossRef] [Green Version]
- Ronchei, C.; Carpinteri, A.; Scorza, D.; Zanichelli, A.; Vantadori, S. The RED criterion for fatigue life assessment of metals under non-proportional loading. Int. J. Fatigue 2022, 163, 107080. [Google Scholar] [CrossRef]
- Carvalho, D.; Silva, A.L.L.; Jesus, A.M.P.; Fernandes, A.A. Fatigue behaviour of structural steels. Comparison of strain-life and fatigue crack propagation data. Mecânica Exp. 2015, 25, 67–78. [Google Scholar]
- ASTM E739-10; Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data. ASTM International: West Conshohocken, PA, USA, 2015.
- Borodii, M.V. Analysis of experimental data on low-cycle fatigue in nonproportional deformation. Strength. Mater. 2000, 32, 7–12. [Google Scholar] [CrossRef]
- Borodii, M.V.; Strizhalo, V.A. Analysis of the experimental data on a low cycle fatigue under nonproportional straining. Int. J. Fatigue 2000, 22, 275–282. [Google Scholar] [CrossRef]
- Borodii, M.V. Obtaining a low-cycle fatigue strain criterion. Strength. Mater. 2001, 33, 217–223. [Google Scholar] [CrossRef]
- Vantadori, S.; Carpinteri, A.; Fortese, G.; Ronchei, C.; Scorza, D.; Zanichelli, A. Fatigue lifetime evaluation of notched components: Implementation of the control volume concept in a strain-based LCF criterion. Theor. Appl. Fract. Mech. 2018, 97, 400–408. [Google Scholar] [CrossRef]
- Araújo, J.A.; Dantas, A.P.; Castro, F.C.; Mamiya, E.N.; Ferreira, J.L.A. On the characterization of the critical plane with a simple and fast alternative measure of the shear stress amplitude in multiaxial fatigue. Int. J. Fatigue 2011, 33, 1092–1100. [Google Scholar] [CrossRef]
- Lagoda, T.; Kulesa, A.; Kurek, A.; Koziarska, J. Correlation of Uniaxial Cyclic Torsion and Tension-Compression for Low-Cycle Fatigue. Mater. Sci. 2018, 53, 522–531. [Google Scholar] [CrossRef]
- Pejkowski, Ł.; Seyda, J. Fatigue of four metallic materials under asynchronous loadings: Small cracks observation and fatigue life prediction. Int. J. Fatigue 2021, 142, 105904. [Google Scholar] [CrossRef]
- Fatemi, A.; Socie, D.F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 1988, 11, 149–165. [Google Scholar] [CrossRef]
- Smith, R.N.; Watson, P.; Topper, T.H. A stress–strain parameter for the fatigue of metals. J. Mater. 1970, 5, 767–778. [Google Scholar]
- Łagoda, T.; Vantadori, S.; Głowacka, K.; Kurek, M.; Kluger, K. Using the Smith-Watson-Topper Parameter and Its Modifications to Calculate the Fatigue Life of Metals: The State-of-the-Art. Materials 2022, 15, 3481. [Google Scholar] [CrossRef]
MATERIAL | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[GPa] | [MPa] | [MPa] | [-] | [-] | [-] | [MPa] | [GPa] | [-] | [-] | [-] | [-] | |
Ref. | [20] | [20] | [20] | [20] | [20] | [20] | [20] | |||||
SS304 | 183 | 550 | 1000 | −0.114 | 0.171 | −0.402 | 577 | 68.3 | −0.114 | 0.296 | −0.402 | 0.34 |
MATERIAL | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[GPa] | [MPa] | [MPa] | [-] | [-] | [-] | [MPa] | [GPa] | [-] | [-] | [-] | [-] | |
Ref. | [16] | [16] | [21] | [21] | [21] | [21] | [16] | |||||
S355 | 208.6 | 380 | 1001 | −0.09 | 0.608 | −0.616 | 578 | 79.0 | −0.09 | 1.053 | −0.616 | 0.29 |
PATH | TC | TOR | IP | OP | ASN1 | ASN2a | ASN2b | ASN3a | ASN3b | ASN4 | ASN5 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | |||||||||||
- | - | 1.00 | 1.00 | 0.50 | 4.00 | 4.00 | 0.20 | 0.25 | 6.00 | 0.70 | |
[°] | - | - | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PATH | LOADING CONDITION | PATH | LOADING CONDITION | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[-] | [-] | [cycles] | [-] | [-] | [cycles] | [cycles] | [cycles] | ||||
TC | 1 | 0.0040 | - | 9457 | ASN1 | 1 | 0.0028 | 0.0048 | 5969 | 2985 | 2985 |
2 | 0.0050 | - | 2509 | 2 | 0.0032 | 0.0055 | 3184 | 1592 | 1592 | ||
3 | 0.0055 | - | 1879 | 3 | 0.0040 | 0.0069 | 1019 | 510 | 510 | ||
4 | 0.0060 | - | 1316 | 4 | 0.0044 | 0.0076 | 718 | 359 | 359 | ||
5 | 0.0065 | - | 1133 | 5 | 0.0048 | 0.0083 | 736 | 368 | 368 | ||
6 | 0.0070 | - | 875 | 6 | 0.0052 | 0.0090 | 448 | 224 | 224 | ||
7 | 0.0080 | - | 561 | 7 | 0.0056 | 0.0097 | 429 | 215 | 215 | ||
TOR | 1 | - | 0.0069 | 50,395 | ASN2a | 1 | 0.0033 | 0.0029 | 4645 | 18,580 | 4645 |
2 | - | 0.0087 | 16,153 | 2 | 0.0038 | 0.0033 | 3026 | 12,104 | 3026 | ||
3 | - | 0.0095 | 9270 | 3 | 0.0047 | 0.0041 | 1233 | 4930 | 1233 | ||
4 | - | 0.0104 | 5920 | 4 | 0.0052 | 0.0045 | 1085 | 4338 | 1085 | ||
5 | - | 0.0113 | 4760 | 5 | 0.0056 | 0.0049 | 492 | 1966 | 492 | ||
6 | - | 0.0121 | 3445 | 6 | 0.0061 | 0.0053 | 604 | 2414 | 604 | ||
7 | - | 0.0139 | 2874 | 7 | 0.0066 | 0.0057 | 412 | 1646 | 412 | ||
IP | 1 | 0.0028 | 0.0049 | 14,255 | ASN3a | 1 | 0.0016 | 0.0054 | 53,656 | 10,731 | 10,731 |
2 | 0.0035 | 0.0061 | 4136 | 2 | 0.0018 | 0.0062 | 29,099 | 5820 | 5820 | ||
3 | 0.0039 | 0.0067 | 3624 | 3 | 0.0022 | 0.0077 | 10,708 | 2142 | 2142 | ||
4 | 0.0042 | 0.0073 | 2440 | 4 | 0.0025 | 0.0085 | 6727 | 1346 | 1346 | ||
5 | 0.0046 | 0.0080 | 1879 | 5 | 0.0027 | 0.0093 | 4711 | 942 | 942 | ||
6 | 0.0049 | 0.0086 | 1370 | 6 | 0.0029 | 0.0101 | 4231 | 846 | 846 | ||
7 | 0.0057 | 0.0098 | 969 | 7 | 0.0031 | 0.0108 | 2508 | 502 | 502 | ||
OP | 1 | 0.0035 | 0.0061 | 2085 | ASN4 | 1 | 0.0031 | 0.0032 | 5535 | 33,207 | 5535 |
2 | 0.0040 | 0.0069 | 987 | 2 | 0.0035 | 0.0036 | 3550 | 21,297 | 3550 | ||
3 | 0.0050 | 0.0087 | 622 | 3 | 0.0044 | 0.0046 | 1423 | 8535 | 1423 | ||
4 | 0.0055 | 0.0095 | 388 | 4 | 0.0048 | 0.0050 | 933 | 5598 | 933 | ||
5 | 0.0060 | 0.0104 | 325 | 5 | 0.0053 | 0.0055 | 727 | 4359 | 727 | ||
6 | 0.0065 | 0.0113 | 246 | 6 | 0.0057 | 0.0059 | 586 | 3513 | 586 | ||
7 | 0.0070 | 0.0121 | 170 | 7 | 0.0061 | 0.0064 | 353 | 2115 | 353 | ||
ASN5 | 1 | 0.0025 | 0.0043 | 9130 | 6391 | 6391 | |||||
2 | 0.0028 | 0.0049 | 5551 | 3886 | 3886 | ||||||
3 | 0.0036 | 0.0061 | 2141 | 1499 | 1499 | ||||||
4 | 0.0039 | 0.0068 | 1506 | 1054 | 1054 | ||||||
5 | 0.0053 | 0.0091 | 1298 | 909 | 909 | ||||||
6 | 0.0046 | 0.0080 | 998 | 699 | 699 | ||||||
7 | 0.0050 | 0.0086 | 687 | 481 | 481 |
PATH | LOADING CONDITION | PATH | LOADING CONDITION | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[-] | [-] | [cycles] | [-] | [-] | [cycles] | [cycles] | [cycles] | ||||
TC | 1 | 0.0020 | - | 38,545 | ASN1 | 1 | 0.0016 | 0.0028 | 12,815 | 6407 | 6407 |
2 | 0.0030 | - | 7536 | 2 | 0.0020 | 0.0035 | 7101 | 3550 | 3550 | ||
3 | 0.0040 | - | 5591 | 3 | 0.0024 | 0.0042 | 3269 | 510 | 510 | ||
4 | 0.0050 | - | 3178 | 4 | 0.0028 | 0.0048 | 1730 | 359 | 359 | ||
5 | 0.0060 | - | 1844 | 5 | 0.0032 | 0.0055 | 1565 | 782 | 782 | ||
6 | 0.0070 | - | 1187 | 6 | 0.0040 | 0.0069 | 1162 | 581 | 581 | ||
7 | 0.0080 | - | 850 | 7 | 0.0044 | 0.0076 | 789 | 215 | 215 | ||
TOR | 1 | - | 0.0035 | 79,399 | ASN2b | 1 | 0.0026 | 0.0044 | 860 | 3440 | 860 |
2 | - | 0.0052 | 11,207 | 2 | 0.0029 | 0.0051 | 951 | 3802 | 951 | ||
3 | - | 0.0069 | 3061 | 3 | 0.0037 | 0.0063 | 484 | 1936 | 484 | ||
4 | - | 0.0087 | 2833 | 4 | 0.0040 | 0.0070 | 423 | 1692 | 423 | ||
5 | - | 0.0104 | 2439 | ASN3b | 1 | 0.0009 | 0.0033 | 31,987 | 7997 | 7997 | |
6 | - | 0.0121 | 1090 | 2 | 0.0014 | 0.0049 | 12,467 | 3117 | 3117 | ||
7 | - | 0.0139 | 877 | 3 | 0.0016 | 0.0057 | 7859 | 1965 | 1965 | ||
IP | 1 | 0.0021 | 0.0037 | 9683 | 4 | 0.0019 | 0.0065 | 6031 | 1508 | 1508 | |
2 | 0.0028 | 0.0049 | 5863 | 5 | 0.0021 | 0.0073 | 5116 | 1279 | 1279 | ||
3 | 0.0035 | 0.0061 | 2992 | 6 | 0.0024 | 0.0081 | 3050 | 763 | 763 | ||
4 | 0.0042 | 0.0073 | 2316 | ASN4 | 1 | 0.0018 | 0.0018 | 3559 | 21,354 | 3559 | |
5 | 0.0049 | 0.0086 | 1254 | 2 | 0.0022 | 0.0023 | 4881 | 29,283 | 4881 | ||
6 | 0.0057 | 0.0098 | 991 | 3 | 0.0026 | 0.0027 | 1616 | 9693 | 1616 | ||
OP | 1 | 0.0019 | 0.0033 | 4697 | 4 | 0.0031 | 0.0032 | 950 | 5700 | 950 | |
2 | 0.0024 | 0.0042 | 1926 | 5 | 0.0035 | 0.0036 | 1302 | 7812 | 1302 | ||
3 | 0.0029 | 0.0050 | 1576 | 6 | 0.0044 | 0.0046 | 530 | 3177 | 530 | ||
4 | 0.0034 | 0.0059 | 1351 | 7 | 0.0048 | 0.0050 | 602 | 3609 | 602 | ||
5 | 0.0039 | 0.0068 | 765 | ASN5 | 1 | 0.0014 | 0.0025 | 21,803 | 15,262 | 15,262 | |
6 | 0.0049 | 0.0085 | 705 | 2 | 0.0018 | 0.0031 | 10,803 | 7562 | 7562 | ||
7 | 0.0054 | 0.0094 | 402 | 3 | 0.0021 | 0.0037 | 6083 | 4258 | 4258 | ||
4 | 0.0025 | 0.0043 | 3438 | 2407 | 2407 | ||||||
5 | 0.0028 | 0.0049 | 2428 | 1700 | 1700 | ||||||
6 | 0.0036 | 0.0061 | 1512 | 1058 | 1058 | ||||||
7 | 0.0039 | 0.0068 | 1476 | 1033 | 1033 |
PATH | LOADING CONDITION | ||||
---|---|---|---|---|---|
[rad] | [-] | [-] | [cycles] | ||
OP | 1 | 2.37 | 0.62 | 0.0097 | 1207 |
2 | 2.37 | 0.62 | 0.0110 | 840 | |
3 | 2.37 | 0.62 | 0.0138 | 431 | |
4 | 2.37 | 0.62 | 0.0151 | 336 | |
5 | 2.37 | 0.62 | 0.0165 | 262 | |
6 | 2.37 | 0.62 | 0.0179 | 206 | |
7 | 2.37 | 0.62 | 0.0192 | 171 | |
ASN1 | 1 | 0.70 | 0.54 | 0.0071 | 3124 |
2 | 0.70 | 0.54 | 0.0081 | 2074 | |
3 | 0.70 | 0.27 | 0.0091 | 1477 | |
4 | 0.70 | 0.55 | 0.0112 | 802 | |
5 | 0.70 | 0.54 | 0.0121 | 626 | |
6 | 0.70 | 0.54 | 0.0131 | 498 | |
7 | 0.70 | 0.54 | 0.0142 | 403 | |
ASN2a | 1 | 0.47 | 0.36 | 0.0068 | 3553 |
2 | 0.47 | 0.36 | 0.0078 | 2335 | |
3 | 0.47 | 0.36 | 0.0097 | 1229 | |
4 | 0.47 | 0.36 | 0.0106 | 921 | |
5 | 0.47 | 0.36 | 0.0115 | 734 | |
6 | 0.47 | 0.36 | 0.0125 | 578 | |
7 | 0.47 | 0.36 | 0.0135 | 465 | |
ASN3a | 1 | 1.10 | 0.63 | 0.0073 | 2903 |
2 | 1.10 | 0.63 | 0.0083 | 1956 | |
3 | 1.10 | 0.63 | 0.0102 | 1052 | |
4 | 1.10 | 0.63 | 0.0113 | 773 | |
5 | 1.10 | 0.63 | 0.0123 | 605 | |
6 | 1.10 | 0.63 | 0.0133 | 484 | |
7 | 1.10 | 0.63 | 0.0142 | 401 | |
ASN4 | 1 | 0.56 | 0.37 | 0.0068 | 3545 |
2 | 0.56 | 0.37 | 0.0077 | 2453 | |
3 | 0.56 | 0.37 | 0.0097 | 1215 | |
4 | 0.56 | 0.37 | 0.0105 | 945 | |
5 | 0.56 | 0.37 | 0.0116 | 712 | |
6 | 0.56 | 0.37 | 0.0125 | 579 | |
7 | 0.56 | 0.37 | 0.0134 | 471 | |
ASN5 | 1 | 0.79 | 0.64 | 0.0072 | 3059 |
2 | 0.79 | 0.64 | 0.0081 | 2121 | |
3 | 0.79 | 0.64 | 0.0102 | 1055 | |
4 | 0.79 | 0.64 | 0.0111 | 806 | |
5 | 0.79 | 0.64 | 0.0150 | 344 | |
6 | 0.79 | 0.64 | 0.0131 | 505 | |
7 | 0.79 | 0.64 | 0.0141 | 405 |
PATH | ||||
---|---|---|---|---|
RED Criterion | Criterion of Ref. [26] | |||
OP | 1.40 | 1.68 | 3.66 | 2.47 |
ASN1 | 1.96 | 3.85 | ||
ASN2a | 1.25 | 2.13 | ||
ASN3a | 2.18 | 1.64 | ||
ASN4 | 1.29 | 1.89 | ||
ASN5 | 1.75 | 1.51 |
PATH | LOADINGCONDITION | ||||
---|---|---|---|---|---|
[rad] | [-] | [-] | [cycles] | ||
OP | 1 | 2.37 | 0.62 | 0.0047 | 3683 |
2 | 2.37 | 0.62 | 0.0059 | 2016 | |
3 | 2.37 | 0.62 | 0.0070 | 1367 | |
4 | 2.37 | 0.62 | 0.0082 | 949 | |
5 | 2.37 | 0.62 | 0.0095 | 701 | |
6 | 2.37 | 0.62 | 0.0118 | 448 | |
7 | 2.37 | 0.62 | 0.0131 | 366 | |
ASN1 | 1 | 0.70 | 0.54 | 0.0040 | 5756 |
2 | 0.70 | 0.54 | 0.0049 | 3184 | |
3 | 0.70 | 0.54 | 0.0059 | 2047 | |
4 | 0.70 | 0.54 | 0.0068 | 1470 | |
5 | 0.70 | 0.54 | 0.0077 | 1094 | |
6 | 0.70 | 0.54 | 0.0096 | 683 | |
7 | 0.70 | 0.54 | 0.0096 | 683 | |
ASN2b | 1 | 0.82 | 0.44 | 0.0064 | 1661 |
2 | 0.82 | 0.44 | 0.0073 | 1254 | |
3 | 0.82 | 0.44 | 0.0091 | 775 | |
4 | 0.82 | 0.44 | 0.0099 | 645 | |
ASN3b | 1 | 1.10 | 0.36 | 0.0037 | 7233 |
2 | 1.10 | 0.36 | 0.0054 | 2497 | |
3 | 1.10 | 0.36 | 0.0062 | 1779 | |
4 | 1.10 | 0.36 | 0.0072 | 1300 | |
5 | 1.10 | 0.36 | 0.0080 | 1025 | |
6 | 1.10 | 0.36 | 0.0089 | 813 | |
ASN4 | 1 | 0.56 | 0.38 | 0.0038 | 6745 |
2 | 0.56 | 0.37 | 0.0046 | 3886 | |
3 | 0.56 | 0.37 | 0.0054 | 2551 | |
4 | 0.56 | 0.37 | 0.0065 | 1639 | |
5 | 0.56 | 0.37 | 0.0073 | 1253 | |
6 | 0.56 | 0.37 | 0.0092 | 760 | |
7 | 0.56 | 0.37 | 0.0100 | 637 | |
ASN5 | 1 | 0.79 | 0.64 | 0.0040 | 5680 |
2 | 0.79 | 0.64 | 0.0050 | 3079 | |
3 | 0.79 | 0.64 | 0.0059 | 2076 | |
4 | 0.79 | 0.64 | 0.0069 | 1434 | |
5 | 0.79 | 0.64 | 0.0077 | 1102 | |
6 | 0.79 | 0.64 | 0.0097 | 674 | |
7 | 0.79 | 0.64 | 0.0102 | 607 |
PATH | ||||
---|---|---|---|---|
RED Criterion | Criterion of Ref. [26] | |||
OP | 1.28 | 1.52 | 2.22 | 1.96 |
ASN1 | 1.40 | 2.20 | ||
ASN2b | 1.61 | 2.35 | ||
ASN3b | 1.17 | 1.47 | ||
ASN4 | 1.49 | 2.20 | ||
ASN5 | 1.97 | 1.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scorza, D. Fatigue Life Assessment of Metals under Multiaxial Asynchronous Loading by Means of the Refined Equivalent Deformation Criterion. Metals 2023, 13, 636. https://doi.org/10.3390/met13030636
Scorza D. Fatigue Life Assessment of Metals under Multiaxial Asynchronous Loading by Means of the Refined Equivalent Deformation Criterion. Metals. 2023; 13(3):636. https://doi.org/10.3390/met13030636
Chicago/Turabian StyleScorza, Daniela. 2023. "Fatigue Life Assessment of Metals under Multiaxial Asynchronous Loading by Means of the Refined Equivalent Deformation Criterion" Metals 13, no. 3: 636. https://doi.org/10.3390/met13030636
APA StyleScorza, D. (2023). Fatigue Life Assessment of Metals under Multiaxial Asynchronous Loading by Means of the Refined Equivalent Deformation Criterion. Metals, 13(3), 636. https://doi.org/10.3390/met13030636