Creep of High-Strength Steel Coated with Plasma Sprayed Self-Fluxing Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Creep Test
3.3. Fractographic Analysis
4. Conclusions
- The samples coated with a nickel-based self-fluxing alloy promoted an increase in the final rupture time during creep and a decrease in the creep rate in stage II (stationary) under the stress load of 200 MPa.
- At loads of 250 and 300 MPa, the creep rate was higher for the coated sample.
- At loads higher than 200 MPa the effect of the coating is harmful to the substrate at tensile creeping by initiating the crack nucleation and further propagation.
- Crack propagation showed a ductile behaviour, leading to failure due to mechanical overload, in line with work carried out with this type of steel.
- The detachment of the coating in the crack region occurred due to mechanical overload, mainly at loads higher than 300 MPa.
- The oxide layer formed between the coating and the substrate can cause a decrease in adhesion, resulting in lower creep resistance at higher stresses.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, S.; Kumar, R.; Das, R.K.; Sahoo, A.K. A Comprehensive Review on Machinability Aspects in Hard Turning of AISI 4340 Steel. IOP Conf. Ser. Mater. Sci. Eng. 2018, 390, 012009. [Google Scholar] [CrossRef]
- Mehrabi, A.; Sharifi, H.; Asadabad, M.A.; CorrectedNajafabadi, R.A.; Rajaee, A. Improvement of AISI 4340 steel properties by intermediate quenching-microstructure, mechanical properties, and fractography. Int. J. Mat. Res. 2020, 111, 9. [Google Scholar] [CrossRef]
- Lee, W.S.; Su, T.T. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions. J. Mater. Process. Technol. 1999, 87, 198–206. [Google Scholar] [CrossRef]
- Nunes, M.M.; Silva, E.M.D.; Renzetti, R.A.; Brito, T.G. Analysis of Quenching Parameters in AISI 4340 Steel by Using Design of Experiments. Mater. Res. 2018, 22, e20180315. [Google Scholar] [CrossRef]
- Sklenicka, V.; Kral, P.; Dvorak, J.; Takizawa, Y.; Masuda, T.; Horita, Z.; Kucharova, K.; Kvapilova, M.; Svobodova, M. Effects of Grain Refinement and Predeformation Impact by Severe Plastic Deformation on Creep in P92 Martensitic Steel. Adv. Eng. Mater. 2019, 22, 1900448. [Google Scholar] [CrossRef]
- Lehmusto, J.; Yrjas, P.; Hupa, L. Pre-oxidation as a means to increase corrosion resistance of commercial superheater steels. Oxid. Met. 2019, 91, 311. [Google Scholar] [CrossRef]
- Karimbaev, R.; Pyun, Y.S.; Maleki, E.; Unal, O.; Amanov, A. An improvement in fatigue behavior of AISI 4340 steel by shot peening and ultrasonic nanocrystal surface modification. Mater. Sci. Eng. A 2020, 791, 139752. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, H.; Seraffon, M.; Fry, A.T. Steam oxidation and mechanical performance of a ferritic–martensitic steel with slurry aluminide coating. Mater. Corros. 2020, 71, 1310–1320. [Google Scholar] [CrossRef]
- Dryepondt, S.; Zhang, Y.; Pint, B.A. Creep and corrosion testing of aluminide coatings on ferritic–martensitic substrates. Surf. Coat. Technol. 2006, 201, 3880–3884. [Google Scholar] [CrossRef]
- Chang, J.-K.; Lin, C.-S.; Wang, W.-R.; Jian, S.-Y. High temperature deformation behaviors of hot dip 55 wt% Al-Zn coated steel. Appl. Surf. Sci. 2020, 511, 145550. [Google Scholar] [CrossRef]
- Parekh, T.; Patel, P.; Sasmal, C.S.; Jamnapara, N.I. Effect of plasma processed Ti-Al coating on oxidation and tensile behavior of Ti6Al4V alloy. Surf. Coat. Technol. 2020, 394, 125704. [Google Scholar] [CrossRef]
- Bates, B.L.; Zhang, Y.; Dryepondt, S.; Pint, B.A. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic–martensitic alloy. Surf. Coat. Technol. 2013, 240, 32–39. [Google Scholar] [CrossRef]
- Zhang, X.C.; Liu, C.J.; Xuan, F.Z.; Wang, Z.D.; Tu, S.T. Effect of NiCr and NiCrAl coatings on the creep resistance of a Ni alloy. Mater. Sci. Eng. A 2011, 528, 2282–2287. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Wu, X.J.; Liu, R.; Yao, M.X. Effects of oxidation-resistant coating on creep behavior of modified 9Cr-1Mo steels. Mater. Sci. Eng. A 2019, 743, 418–424. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, X.; Lu, J.; Huang, J.; Li, W. Mechanism of accelerating creep rupture under high stress level of pack cementation aluminide coatings deposited onto T92 steel tube. Surf. Coat. Technol. 2023, 455, 129212. [Google Scholar] [CrossRef]
- Simunovic, K.; Havrlisan, S.; Saric, T.; Vukelic, D. Modeling and Optimization in Investigating Thermally Sprayed Ni-Based Self-Fluxing Alloy Coatings: A Review. Materials 2020, 13, 4584. [Google Scholar] [CrossRef]
- Mrdak, M.; Vencl, A.; Ćosić, M. Microstructure and Mechanical Properties of the Mo-NiCrBSi Coating Deposited by Atmos-pheric Plasma Spraying. FME Trans. 2009, 37, 27–32. [Google Scholar]
- Simunovic, K.; Saric, T.; Simunovic, G. Different Approaches to the Investigation and Testing of the Ni-Based Sulf-Fluxing Alloy Coatings-A Review. Part 1: General Facts, Wear and Corrosion Investigations. Tribol. Trans. 2014, 57, 955. [Google Scholar] [CrossRef]
- Gan, J.A.; Berndt, C.C. Review on the Oxidation of Metallic Thermal Sprayed Coatings: A Case Study with Reference to Ra-re-Earth Permanent Magnetic Coatings. J. Therm. Spray Techn. 2013, 22, 1069–1091. [Google Scholar] [CrossRef]
- Davis, J.R. Handbook of Thermal Spray Technology; ASM International: Material Park, OH, USA, 2004. [Google Scholar]
- Lorenzo-Bañuelos, M.; Díaz, A.; Rodríguez, D.; Cuesta, I.; Fernández, A.; Alegre, J. Influence of Atmospheric Plasma Spray Parameters (APS) on the Mechanical Properties of Ni-Al Coatings on Aluminum Alloy Substrate. Metals 2021, 11, 612. [Google Scholar] [CrossRef]
- Li, C.J.; Luo, X.T.; Dong, X.Y.; Zhang, L.; Li, C.X. Recent Research Advances in Plasma Spraying of Bulk-Like Dense Metal Coatings with Metallurgically Bonded Lamellae. J. Therm. Spray Technol. 2022, 31, 5–27. [Google Scholar] [CrossRef]
- Miguel, J.R.; Guilemany, J.M.; Vizcaino, S. Tribological study of NiCrBSi coating obtained by different processes. Tribol. Int. 2003, 36, 181–187. [Google Scholar] [CrossRef]
- Holdsworth, S. Creep-Fatigue Failure Diagnosis. Materials 2015, 8, 7757–7769. [Google Scholar] [CrossRef] [PubMed]
- Onck, P. Growth of an initially sharp crack by grain boundary cavitation. J. Mech. Phys. Solids 1999, 47, 99–139. [Google Scholar] [CrossRef]
- ASTM E139-11; Standard Test Methods for Conducting Creep, Creep Rupture, and Stress Rupture Tests of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2011; p. 11.
- ASTM A29/A29M; Standard Specifications for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought. ASTM International: West Conshohocken, PA, USA, 2013.
- DSMTS-0026.7; Oerlikon Metco: Pfäffikon, Switzerland, 2016; Available online: http://successcompass.com.sa/wp-content/uploads/2016/12/Oerlikon-Metco-Materials-Guide.pdf (accessed on 25 August 2020).
- Mellali, M.; Grimaud, A.; Leger, A.C.; Fauchais, P.; Lu, J. Alumina grit blasting parameters for surface preparation in the plasma spraying operation. J. Therm. Spray Technol. 1997, 6, 217–227. [Google Scholar] [CrossRef]
- Yang, J.; Qu, K.; Yang, J. Fatigue performance of Q355B steel substrate treated by grit blasting with and without subsequent cold spraying with Al and Cu. Surf. Coat. Technol. 2021, 405, 126662. [Google Scholar] [CrossRef]
- Barros, R.A.; Abdalla, A.J.; Rodrigues, H.L.; Pereira, M.D.S. Caracterização de um aço AISI/SAE 4340 com diferentes microestruturas através da técnica de tríplice ataque. Rev. Bras. Aplic. Vácuo. 2015, 34, 71–74. [Google Scholar] [CrossRef]
- Kazamer, N.; Muntean, R.; Vălean, P.C.; Pascal, D.T.; Mărginean, G.; Șerban, V.A. Comparison of Ni-Based Self-Fluxing Remelted Coatings for Wear and Corrosion Applications. Materials 2021, 14, 3293. [Google Scholar] [CrossRef]
- Zeng, Z.; Kuroda, S.; Era, H. Comparison of oxidation behaviour Ni-20Cr alloy and Ni-based self-fluxing alloy during air plasma spraying. Surf. Coat. Technol. 2009, 204, 69–77. [Google Scholar] [CrossRef]
- Lee, J.S.; Armaki, H.G.; Maruyama, K.; Muraki, T.; Asahi, H. Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–VNb steel. Mater. Sci. Eng. A-Struct. 2006, 428, 270. [Google Scholar] [CrossRef]
- Evans, R.W.; Wilshire, B. Introduction to Creep; Oakdale Printing Company: London, UK, 1993. [Google Scholar]
- Zhao, L.; Jing, H.; Xiu, J.; Han, Y.; Xu, L. Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint. Mater. Des. 2014, 57, 736. [Google Scholar] [CrossRef]
- Ranieri, A. Caracterização Mecânica e Microestrutura de em aço 4340 em Estruturas Multifásicas e Pratamento de Nitrocarbonetação a Plasma. Ph.D. Thesis, UNESP, Guaratinguetá, Brazil, 2010. [Google Scholar]
- Li, Y.F.; Wang, L.; Zhang, G.; Qi, D.Q.; Du, K.; Lou, L.H. Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100 °C/150 MPa. Acta Mettal. Sin. 2020, 33, 446. [Google Scholar] [CrossRef]
- Higuera, V.; Belzunce, F.J.; Carriles, A.; Poveda, S. Influence of the thermal-spray procedure on the properties of a nickel-chromium coating. J. Mater. Sci. 2002, 37, 649–654. [Google Scholar] [CrossRef]
- Waki, H.; Ogura, K.; Nishikawa, I.; Kashihara, Y. Residual Stress Measurement of Plasma-Sprayed Coatings. JSME Int. J. A-Solid M 2003, 46, 590–597. [Google Scholar] [CrossRef]
- Kuroda, S.; Clyne, T.W. The quenching stress in thermally sprayed coatings. Thin Solid Films 1991, 200, 49–66. [Google Scholar] [CrossRef]
- Xuan, F.Z.; Chen, J.J.; Wang, Z.; Tu, S.T. Time-dependent deformation and fracture of multi-material systems at high temperature. Int. J. Press. Vessel. Pip. 2009, 86, 604–615. [Google Scholar] [CrossRef]
- Pershin, V.; Lufitha, M.; Chandra, S.; Mostaghimi, J. Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings. J. Therm. Spray Techn. 2003, 12, 370–376. [Google Scholar] [CrossRef]
Element | C | Mn | F | S | Si | Ni | Cr | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|
%weigth | 0.38–0.43 | 0.6–0.8 | 0.035 | 0.04 | 0.15–0.35 | 1.65–2.0 | 0.7–0.9 | 0.2–0.3 | Bal. |
Element | Ni | Cr | B | Si | C | Fe |
---|---|---|---|---|---|---|
% weight | Balance | 17 | 3.5 | 4 | 1 | 4 |
Parameters | Value |
---|---|
Argon flow rate | 53 L/min |
Hydrogen flow rate | 1.6 L/min |
Carrier gas flow rate | 2.8 L/min |
Powder feed rate | 25 g/min |
Current | 750 A |
Standoff Distance | 100 mm |
s (MPa) | Condition | tp (h) | tf (h) | εf (mm/mm) | |
---|---|---|---|---|---|
200 | Pristine | 10.01 | 5.264 × 10−5 | 144.77 | 0.016 |
250 | 8.00 | 0.521 × 10−4 | 65.98 | 0.009 | |
300 | 2.00 | 3.645 × 10−4 | 13.47 | 0.010 | |
200 | Coated | 10.01 | 1.315 × 10−5 | 187.23 | 0.0157 |
250 | 3.21 | 1.206 × 10−4 | 50.44 | 0.015 | |
300 | 1.00 | 5.354 × 10−4 | 12.93 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, D.A.; Almeida, G.F.C.; Couto, A.A.; Massi, M.; Caliari, F.R.; Lima, C.R.C. Creep of High-Strength Steel Coated with Plasma Sprayed Self-Fluxing Alloy. Metals 2023, 13, 763. https://doi.org/10.3390/met13040763
Moraes DA, Almeida GFC, Couto AA, Massi M, Caliari FR, Lima CRC. Creep of High-Strength Steel Coated with Plasma Sprayed Self-Fluxing Alloy. Metals. 2023; 13(4):763. https://doi.org/10.3390/met13040763
Chicago/Turabian StyleMoraes, Denison A., Gisele F. C. Almeida, Antonio A. Couto, Marcos Massi, Felipe R. Caliari, and Carlos R. C. Lima. 2023. "Creep of High-Strength Steel Coated with Plasma Sprayed Self-Fluxing Alloy" Metals 13, no. 4: 763. https://doi.org/10.3390/met13040763
APA StyleMoraes, D. A., Almeida, G. F. C., Couto, A. A., Massi, M., Caliari, F. R., & Lima, C. R. C. (2023). Creep of High-Strength Steel Coated with Plasma Sprayed Self-Fluxing Alloy. Metals, 13(4), 763. https://doi.org/10.3390/met13040763